期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of the Retarder on Initial Hydration and Mechanical Properties of the"one-step"Alkaliactivated Composite Cementitious Materials
1
作者 DING Rui HE Yue +3 位作者 LI Xingchen LI Han TIAN Hao WANG Hongen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1199-1213,共15页
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a... This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM. 展开更多
关键词 "one-step"alkali-activated composite cementitious materials solid activator hydration mechanism RETARDER retarding mechanism
下载PDF
Analysis of Hydration Mechanism and Microstructure of Composite Cementitious Materials for Filling Mining 被引量:2
2
作者 王忠昶 WANG Zechuan +1 位作者 XIA Hongchun WANG Hongfu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期910-913,共4页
To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious materia... To obtain the compositions and microstructure of hydration products of cementitious material in different hydration ages and its growth law of filling strength, the optimal proportion of composite cementitious material was determined according to the chemical composition of cement clinker which was composed of the Portland cement 32.5R, CSA 42.5 sulphoaluminate cement and two gypsum(CS). The characterization of composite cementitious materials in different hydration ages was conducted by NMR, XRD and SEM techniques. The mechanism of hydration was explored. It is shown that the compressive strength of the test block increases gradually with the increase of hydration age. The microstructure of composite cementitious material can be changed from Al-O octahedron into Al-O tetrahedron in the hydration process. The hydrated alkali alumi niumsilicate formed with Si-O tetrahedron and Al-O tetrahedron. The degree of polymerization of Si-O tetrahedron gradually increased, and the structural strength of cementitious materials continued to increase. The diffraction peak of clinker minerals gradually decreased with the extension of hydration age. The CaSO4 completely hydrated to produce Aft during hydration which resulted in high early strength of cementitious material. The early hydration product of composite cementitious materials was Aft with a needle bar structure. The main middle and last hydration products were CSH gel and CH gel with dense prismatic shape. The microscopic pore of composite cementitious material gradually decreased and improved the later strength of filling block. The strong support was provided for mined-out area. 展开更多
关键词 filling composite cementitious material degree of polymerization hydration products microstructure
下载PDF
Coupled Effects of Heat and Moisture of Early-Age Concrete 被引量:1
3
作者 Yang Wang Hanxi Wang +1 位作者 Linwei Yang Li Qian 《Fluid Dynamics & Materials Processing》 EI 2021年第4期845-857,共13页
In order to analyze the coupled influence of temperature and humidity on early-age concrete(including cement and copper tailings),a mathematical model is introduced on the basis of the Krstulovic-Dabic hydration react... In order to analyze the coupled influence of temperature and humidity on early-age concrete(including cement and copper tailings),a mathematical model is introduced on the basis of the Krstulovic-Dabic hydration reaction kinetic equations.In such a framework,the influence of hydration-released heat and water consumption are also taken into account.The results provided by such a model are verified by means of experiments and related sensor measurements.The research results show that this model can adequately predict the internal temperature and the humidity temporal evolution laws. 展开更多
关键词 composite cementitious materials cement hydration MICRO-STRUCTURE diffusion coefficient coupled of heat and moisture
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部