Introduction:Understanding complex urban eco-hydrological processes through models is an important approach in sponge city construction.However,the research on this has not kept pace with the urgent need for sustainab...Introduction:Understanding complex urban eco-hydrological processes through models is an important approach in sponge city construction.However,the research on this has not kept pace with the urgent need for sustainable development of urban water resources,which makes the current construction efficiencies unsatisfactory.Outcomes:This review highlights the importance of establishing a multi-scale urban distributed eco-hydrological model by analyzing the connotations of sponge city construction.Hydrological models that can be configured for sponge city construction were selected.Traditional models have limitations in coupling ecological and hydrological processes,multi-scale and landscape-based simulations,refined simulations,and computational efficiency.By contrast,cellular automaton has a discrete data structure in space,time,and states,is capable of bottom-up computing,and provides a new conceptual framework for simulating complex urban eco-hydrological processes.Discussion and Conclusion:Future model development may focus on the conduction of multi-scale simulation systems,the simulation of coupled urban eco-hydrological processes,the quantification of eco-hydrological responses to land cover composition,spatial configuration and low impact development practices,and improving simulation accuracy.展开更多
基金This work was supported by the Beijing Natural Science Foundation[8181001]Special Fund for Scientific Research Cooperation between Colleges and Institutes of University of Chinese Academy of Sciences[Y65201NY00].
文摘Introduction:Understanding complex urban eco-hydrological processes through models is an important approach in sponge city construction.However,the research on this has not kept pace with the urgent need for sustainable development of urban water resources,which makes the current construction efficiencies unsatisfactory.Outcomes:This review highlights the importance of establishing a multi-scale urban distributed eco-hydrological model by analyzing the connotations of sponge city construction.Hydrological models that can be configured for sponge city construction were selected.Traditional models have limitations in coupling ecological and hydrological processes,multi-scale and landscape-based simulations,refined simulations,and computational efficiency.By contrast,cellular automaton has a discrete data structure in space,time,and states,is capable of bottom-up computing,and provides a new conceptual framework for simulating complex urban eco-hydrological processes.Discussion and Conclusion:Future model development may focus on the conduction of multi-scale simulation systems,the simulation of coupled urban eco-hydrological processes,the quantification of eco-hydrological responses to land cover composition,spatial configuration and low impact development practices,and improving simulation accuracy.