期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Fabrication and Magnetic Properties of Composite Ni_(0.5)Zn_(0.5)Fe_2O_4/Pb(Zr_(0.52)Ti_(0.48))O_3 Nanofibers by Electrospinning 被引量:1
1
作者 沈湘黔 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期384-387,共4页
One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT... One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite. 展开更多
关键词 nanofiber Ni0.5Zn0.5Fe2O4 Pb(Zr0.52Ti0.48)O3 composite electrospinning
下载PDF
Electrospinning of GeO_2–C fibers and electrochemical application in lithium-ion batteries 被引量:2
2
作者 Qi Yang Tao Sun +1 位作者 Jia-Yu Yu Jin-Xin Ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第3期412-416,共5页
GeO2–C fibers were successfully synthesized using electrospinning homogeneous sol and subsequent calcination in an inert atmosphere. The spinnable sol was prepared by adding polyacrylonitrile(PAN)and polyvinylpyrro... GeO2–C fibers were successfully synthesized using electrospinning homogeneous sol and subsequent calcination in an inert atmosphere. The spinnable sol was prepared by adding polyacrylonitrile(PAN)and polyvinylpyrrolidone(PVP) in a weight ratio of 1:1 into a mixture with white precipitate produced by dropping GeCl4 into DMF. X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS),thermogravimetric analysis(TGA), scanning electron microscopy(SEM) and transmission electron microscopy(TEM) were employed to characterize the as-obtained fibers, and electrochemical tests were conducted to measure electrochemical performance of the electrode. The electrospun fibers have uniform diameters of 300 nm. After being calcined at 600 8C for 2 h in Ar, they transform to amorphous GeO2–C fibers with the same morphologies. The Ge O2–C fibers exhibit excellent cycling stability with a high reversible capacity of 838.93 m A h g^-1after 100 cycles at a current density of 50 m A g^-1, indicating the composite fibers could be promising anode candidates for lithium-ion batteries. 展开更多
关键词 GeO2 Carbon composite fibers Electrospin Electrchemical performance
原文传递
Structural,Dielectric,and Magnetic Studies on Electrospun Magnesium Ferrite-Polyvinylidene Fluoride Core–Shell Composite Fibers
3
作者 V.Revathi S.Dinesh Kumar +3 位作者 P.Chithra Lekha V.Subramanian T.S.Natarajan C.Muthamizhchelvan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第4期557-562,共6页
The sub-micron(of the order of 150 nm) thick core–shell composite fibers of magnesium ferrite-polyvinylidene fluoride are prepared by electrospinning.The loading of magnesium ferrite is varied from 1 to 10 wt%.The ... The sub-micron(of the order of 150 nm) thick core–shell composite fibers of magnesium ferrite-polyvinylidene fluoride are prepared by electrospinning.The loading of magnesium ferrite is varied from 1 to 10 wt%.The study results by X-ray diffraction,scanning electron microscope,and infra-red spectroscopy indicate the formation of core–shell structure and an enhancement in the amount of b-phase compared to a-phase in the polyvinylidene fluoride.The particle size of the magnesium ferrite in the fiber is evaluated to be 30 nm.The low frequency dielectric studies indicate that the addition of the magnesium ferrite increases the polarization resulting in the increase in the dielectric constant but decreases the dielectric loss.The magnetization measurements indicate an increased value of coercivity compared to bulk due to the nano-size of the magnesium ferrite.The microwave absorption at the ferromagnetic resonance increases with the increase in the concentration of magnesium ferrite.The resonance field is found to vary with the loading of MFO. 展开更多
关键词 electrospinning Polymer composites Dielectric properties Magnetic properties X-ray diffraction(XRD) Microwave absorption
原文传递
In situ polymerization of aniline in electrospun microfibers 被引量:1
4
作者 Xiao-Qiang Li Wan-Wan Liu +3 位作者 Shui-Ping Liu Meng-Juan Li Yong-Gui Li Ming-Qiao Ge 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第1期83-86,共4页
Conductive microfibers with an average diameter of ca. 1.0 μm were prepared by in situ polymerization of aniline, in which poly(vinylchloride-acrylonitrile) (PVC-AN) was used as the filament-material in electrosp... Conductive microfibers with an average diameter of ca. 1.0 μm were prepared by in situ polymerization of aniline, in which poly(vinylchloride-acrylonitrile) (PVC-AN) was used as the filament-material in electrospinning to form precursor microfibers and carry the aniline monomers. Fourier-transform infrared (FTIR) results demonstrated that PANi was successfully polymerized in the microfibers. The morphology of the PVC-AN-PANi microfibers was observed by scanning electron microscopy (SEM). Results of differential scanning calorimetry indicated that the polymer composite of PVC-AN-PANi formed via molecular interactions. Although the conductivity of PVC-AN-PANi microfibers was still limited (2.2 × 10^-8 S/cm), this method provided an effective and convenient approach for preparing highly uniform and soft microfibrous electrodes. 展开更多
关键词 Conductive microfibers electrospinning Polymer composite Polyaniline
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部