The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here...The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the...In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the efficient power supply without perfect stable control. Micro the early stage of network development related to micro network operation concepts are modeled on the control of large power system. Our proposed approach is proven to be effective and feasible through the numerical simulation and theoretical analysis which will be meaningful.展开更多
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have bee...Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.展开更多
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe...An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.展开更多
The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid reg...The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.展开更多
The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while ...The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.展开更多
Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highper...Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highperformance polymer-and ceramic-based dielectric composites,and emphases are placed on capacitive energy storage and harvesting,solid-state cooling,temperature stability,electromechanical energy interconversion,and high-power applications.Emerging fabrication techniques of dielectric composites such as 3D printing,electrospinning,and cold sintering are addressed,following by highlighted challenges and future research opportunities.The advantages and limitations of the typical theoretical calculation methods,such as finite-element,phase-field model,and machine learning methods,for designing high-performance dielectric composites are discussed.This review is concluded by providing a brief perspective on the future development of composite dielectrics toward energy and electronic devices.展开更多
This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emerg...This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.展开更多
Based on the energy storage cloud platform architecture,this study considers the extensive configuration of energy storage devices and the future large-scale application of electric vehicles at the customer side to bu...Based on the energy storage cloud platform architecture,this study considers the extensive configuration of energy storage devices and the future large-scale application of electric vehicles at the customer side to build a new mode of smart power consumption with a flexible interaction,smooth the peak/valley difference of the load side power,and improve energy efficiency.A plug and play device for customer-side energy storage and an internet-based energy storage cloud platform are developed herein to build a new intelligent power consumption mode with a flexible interaction suitable for ordinary customers.Based on the load perception of the power grid,this study aims to investigate the operating state and service life of distributed energy storage devices.By selecting an integrated optimal control scheme,this study designs a kind of energy optimization and deployment strategy for stratified partition to reduce the operating cost of the energy storage device on the client side.The effectiveness of the system and the control strategy is verified through the Suzhou client-side distributed energy storage demonstration project.展开更多
The increasing penetration of renewable energy into power grids is reducing the regulation capacity of automatic generation control(AGC).Thus,there is an urgent demand to coordinate AGC units with active equipment suc...The increasing penetration of renewable energy into power grids is reducing the regulation capacity of automatic generation control(AGC).Thus,there is an urgent demand to coordinate AGC units with active equipment such as energy storage.Current dispatch decision-making methods often ignore the intermittent effects of renewable energy.This paper proposes a two-stage robust optimization model in which energy storage is used to compensate for the intermittency of renewable energy for the dispatch of AGC units.This model exploits the rapid adjustment capability of energy storage to compensate for the slow response speed of AGC units,improve the adjustment potential,and respond to the problems of intermittent power generation from renewable energy.A column and constraint generation algorithm is used to solve the model.In an example analysis,the proposed model was more robust than a model that did not consider energy storage at eliminating the effects of intermittency while offering clear improvements in economy and efficiency.展开更多
Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOF...Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOFs still suffer from poor stability,insufficient conductivity,and low utilization of active sites.One strategy to circumvent these issues is to optimize MOFs via designing composites.Here,the design principle from the viewpoint of the intrinsic relationships among various components will be illuminated to acquire the synergistic effects,including two working modes:(1)MOFs with assistant components,(2)MOFs with other function components.This review introduces recent research progress of MOF-based composites with their typical applications in energy conversion(catalysis)and storage(supercapacitor and ion battery).Finally,the challenges and future prospects of MOF-based composites will be discussed in terms of maximizing composite properties.展开更多
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra...To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit.展开更多
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient volt...A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.展开更多
Composite thermochemical energy storage(TCES)represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply.However,there are open questions about ...Composite thermochemical energy storage(TCES)represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply.However,there are open questions about their performance and the root cause of some observed phenomena.Some researchers have observed the breakdown of particles in their production phase,and in their use.This study seeks to investigate the underlying cause of this breakdown.SEM and EDX analysis have been conducted on MgCl2 impregnated 13X zeolite composites of differing diameters,as well as LiX zeolite.This was done in order to study the level of impregnation of salt into the zeolite matrix,as well as the effect this impregnation process has on the morphology of the zeolite.Analysis was conducted using ImageJ software to study the effect of the impregnation process on the diameter of the particles.It has been found that a by weight impregnation concentration of magnesium chloride of 11.90%for the LiX zeolite,and 7.59%and 5.26%for the large diameter 13X zeolite and the small diameter 13X zeolite respectively has been achieved.It has been found that the impregnation process significantly affects themorphology of 13X zeolite particles,causing large fissures to form,and eventually resulting in the previously found breakdown of these particles.It has been verified that a primary factor influencing the breakdown of the 13X zeolite particles is the efflorescence and sub-fluorescence phenomena,which leads to a build-up of crystals in the zeolite pores.It has also been found that prolonged impregnation times and the use of high concentration salt solutions in the soaking process can induce significant crystal growth which also leads to the breakdown of these particles.Results demonstrate that LiX zeolite is the optimum host matrix choice in these conditions.These results will allow for the design of more resilient composite TCES particles.展开更多
In this paper,extensive efforts have been undertaken to design and develop a control system,which is incorporated with an energy storage device that can store energy from low-voltage renewable sources.The developed de...In this paper,extensive efforts have been undertaken to design and develop a control system,which is incorporated with an energy storage device that can store energy from low-voltage renewable sources.The developed device acts as a storage element,which can be used to charge small-scale batteries,cellular devices,and other applications in remote places where the grid connection is not available.The circuit is developed using a case-by-case analysis.In order to solve the low output voltage problem,a bipolar junction transistor-metal oxide semiconductor field-effect transistor(BJT-MOSFET)based switch control technology with the Arduino microcontroller has been implemented.The developed control system is extremely efficient in charging batteries through a supercapacitor for low-voltage sources.In this research,a small-scale 200-W portable vertical axis wind turbine is used at a wind speed of 3 m/s.The result shows the efficiency of the proposed system as compared with the conventional systems.The proposed system can be an important tool of the latest distributed energy generation technology which is an important part of a smart city.Lastly,the limitations and future scopes of the development of the control device are discussed for the future barrier.An important future scope identified is to integrate the Internet of Things based mobile interface for remote monitoring for any kind of pandemic situation like COVID-19.Now,it is high time to get our smart city concept aligned with the post COVID pandemic situation and get us prepared smartly for similar future occurrences.展开更多
The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results ...The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results to the load shading issue that led to the voltage and frequency instability. In additional to that, the high proportions of erratic renewable energy sources can lead to erratic frequency changes which affect the grid stability. In order to reduce this effect, the energy storage system is commonly used in most wind-solar energy systems to balance the voltage and frequency instability during load variations. One of the innovative energy storage systems is the compressed air energy storage system (CAES) for wind and solar hybrid energy system and this technology is the key focus in this research study. The aim of this research was to examine the system configuration of the CAES system through modelling and experimental approach with PID controller design for regulating the voltage and frequency under different load conditions. The essential elements and the entire system have been presented in this work as thorough modelling in the MATLAB/Simulink environment for different load conditions. The developed model was tested through an experimental workbench using the developed prototype of the compressed air storage in the Siemens Lab at DeKUT and explored the consequence of the working parameters on the system proficiency and the model accuracy. The performance of the system for the developed prototype of CAES system was validated using results from an experimental workbench with MATLAB/Simulink R2022b simulation. The modeling and experimental results, shows that the frequency fluctuation and voltage drop of the developed CAES system during load variations was governed by the I/P converter using a PID_Compact controller programed in the TIA Portal V17 software and downloaded into PLC S7 1200. Based on these results, the model can be applied as a basis for the performance assessment of the compressed air energy storage system so as to be included in current technology of wind and solar hybrid energy systems.展开更多
The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A f...The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A feedback control law for attitude tracking is firstly developed by using Lyapunov approach, and then a torque based control law of the flywheel is studied. The control torque vector of the flywheel is decomposed into three parts which are orthogonal to one another by using the method of singularity value decomposition (SVD). One part is used to provide the attitude control torque, another part is used to store energy with given power, and the last part is used to accomplish wheel speed equalization to avoid wheel saturation caused by large difference among the wheel spin rates. A management scheme for energy storage power using kinetic energy feedback is proposed to keep energy balance, which can avoid wheel saturation caused by superfluous energy. Numerical simulation results demonstrate the effectiveness of the control scheme.展开更多
基金the National Natural Science Foundation of China[grant numbers 52203038,52173036 and 52073107]the National Key Technology R&D Program of China[grant number 2022YFC3901904,2022YFC3901903,and 2020YFB1709301]the Central University Basic Research Fund of China[grant number 2021XXJS035].
文摘The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
文摘In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the efficient power supply without perfect stable control. Micro the early stage of network development related to micro network operation concepts are modeled on the control of large power system. Our proposed approach is proven to be effective and feasible through the numerical simulation and theoretical analysis which will be meaningful.
基金the National Natural Science Foundation of China(No.51973080,92066104).
文摘Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.
基金This research was funded by the Deputyship for Research and Innovation,Ministry of Education,Saudi Arabia,through the University of Tabuk,Grant Number S-1443-0123.
文摘An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.
基金supported by National Natural Science Foundation of China(Project No.52077079).
文摘The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.
基金relates to Department of Navy award(N00014-20-1-2858)。
文摘The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.
基金supported by the State Key Lab of Advanced Metals and Materials(No.2020-Z16)the Fundamental Research Funds for the Central Universities(USTB:No.06500135)+3 种基金Huimin Qiao thanks the National Research Foundation of Korea(No.2019R1I1A1A01063888)for financial supportFangping Zhuo would like to thank the Alexander von Humboldt Foundation for financial supportThe computing work was supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome EngineeringProf.Q.Zhang also acknowledges the financial support from the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,and Henan Key Laboratory of High-temperature Structural and Functional Materials,Henan University of Science and Technology(Grants No.HKDNM2019013).
文摘Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highperformance polymer-and ceramic-based dielectric composites,and emphases are placed on capacitive energy storage and harvesting,solid-state cooling,temperature stability,electromechanical energy interconversion,and high-power applications.Emerging fabrication techniques of dielectric composites such as 3D printing,electrospinning,and cold sintering are addressed,following by highlighted challenges and future research opportunities.The advantages and limitations of the typical theoretical calculation methods,such as finite-element,phase-field model,and machine learning methods,for designing high-performance dielectric composites are discussed.This review is concluded by providing a brief perspective on the future development of composite dielectrics toward energy and electronic devices.
文摘This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.
基金supported by the State Grid Corporation of China Science and Technological Project(Research and demonstration application of key technology of energy storage cloud for mobile energy storage application of electric vehicles 5419-20197121 7a-0-0-00)
文摘Based on the energy storage cloud platform architecture,this study considers the extensive configuration of energy storage devices and the future large-scale application of electric vehicles at the customer side to build a new mode of smart power consumption with a flexible interaction,smooth the peak/valley difference of the load side power,and improve energy efficiency.A plug and play device for customer-side energy storage and an internet-based energy storage cloud platform are developed herein to build a new intelligent power consumption mode with a flexible interaction suitable for ordinary customers.Based on the load perception of the power grid,this study aims to investigate the operating state and service life of distributed energy storage devices.By selecting an integrated optimal control scheme,this study designs a kind of energy optimization and deployment strategy for stratified partition to reduce the operating cost of the energy storage device on the client side.The effectiveness of the system and the control strategy is verified through the Suzhou client-side distributed energy storage demonstration project.
基金supported by Theoretical study of power system synergistic dispatch National Science Foundation of China(51477091).
文摘The increasing penetration of renewable energy into power grids is reducing the regulation capacity of automatic generation control(AGC).Thus,there is an urgent demand to coordinate AGC units with active equipment such as energy storage.Current dispatch decision-making methods often ignore the intermittent effects of renewable energy.This paper proposes a two-stage robust optimization model in which energy storage is used to compensate for the intermittency of renewable energy for the dispatch of AGC units.This model exploits the rapid adjustment capability of energy storage to compensate for the slow response speed of AGC units,improve the adjustment potential,and respond to the problems of intermittent power generation from renewable energy.A column and constraint generation algorithm is used to solve the model.In an example analysis,the proposed model was more robust than a model that did not consider energy storage at eliminating the effects of intermittency while offering clear improvements in economy and efficiency.
基金the National Natural Science Foundation of China(NNSFC grants 21707093).
文摘Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOFs still suffer from poor stability,insufficient conductivity,and low utilization of active sites.One strategy to circumvent these issues is to optimize MOFs via designing composites.Here,the design principle from the viewpoint of the intrinsic relationships among various components will be illuminated to acquire the synergistic effects,including two working modes:(1)MOFs with assistant components,(2)MOFs with other function components.This review introduces recent research progress of MOF-based composites with their typical applications in energy conversion(catalysis)and storage(supercapacitor and ion battery).Finally,the challenges and future prospects of MOF-based composites will be discussed in terms of maximizing composite properties.
基金funded by the Gansu Provincial Science and Technology Information Disclosure System Project(21ZD8JA001)Tianyou Innovation Team of Lanzhou Jiaotong University(TY202009).
文摘To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit.
基金supported by the National Natural Science Foundation of China(Grant No.51307124)the Major Program of the National Natural Science Foundation of China(Grant No.51190105)
文摘A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.
基金funded by the UKRI DTP Scholarship:EP/R513040/1.
文摘Composite thermochemical energy storage(TCES)represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply.However,there are open questions about their performance and the root cause of some observed phenomena.Some researchers have observed the breakdown of particles in their production phase,and in their use.This study seeks to investigate the underlying cause of this breakdown.SEM and EDX analysis have been conducted on MgCl2 impregnated 13X zeolite composites of differing diameters,as well as LiX zeolite.This was done in order to study the level of impregnation of salt into the zeolite matrix,as well as the effect this impregnation process has on the morphology of the zeolite.Analysis was conducted using ImageJ software to study the effect of the impregnation process on the diameter of the particles.It has been found that a by weight impregnation concentration of magnesium chloride of 11.90%for the LiX zeolite,and 7.59%and 5.26%for the large diameter 13X zeolite and the small diameter 13X zeolite respectively has been achieved.It has been found that the impregnation process significantly affects themorphology of 13X zeolite particles,causing large fissures to form,and eventually resulting in the previously found breakdown of these particles.It has been verified that a primary factor influencing the breakdown of the 13X zeolite particles is the efflorescence and sub-fluorescence phenomena,which leads to a build-up of crystals in the zeolite pores.It has also been found that prolonged impregnation times and the use of high concentration salt solutions in the soaking process can induce significant crystal growth which also leads to the breakdown of these particles.Results demonstrate that LiX zeolite is the optimum host matrix choice in these conditions.These results will allow for the design of more resilient composite TCES particles.
文摘In this paper,extensive efforts have been undertaken to design and develop a control system,which is incorporated with an energy storage device that can store energy from low-voltage renewable sources.The developed device acts as a storage element,which can be used to charge small-scale batteries,cellular devices,and other applications in remote places where the grid connection is not available.The circuit is developed using a case-by-case analysis.In order to solve the low output voltage problem,a bipolar junction transistor-metal oxide semiconductor field-effect transistor(BJT-MOSFET)based switch control technology with the Arduino microcontroller has been implemented.The developed control system is extremely efficient in charging batteries through a supercapacitor for low-voltage sources.In this research,a small-scale 200-W portable vertical axis wind turbine is used at a wind speed of 3 m/s.The result shows the efficiency of the proposed system as compared with the conventional systems.The proposed system can be an important tool of the latest distributed energy generation technology which is an important part of a smart city.Lastly,the limitations and future scopes of the development of the control device are discussed for the future barrier.An important future scope identified is to integrate the Internet of Things based mobile interface for remote monitoring for any kind of pandemic situation like COVID-19.Now,it is high time to get our smart city concept aligned with the post COVID pandemic situation and get us prepared smartly for similar future occurrences.
文摘The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results to the load shading issue that led to the voltage and frequency instability. In additional to that, the high proportions of erratic renewable energy sources can lead to erratic frequency changes which affect the grid stability. In order to reduce this effect, the energy storage system is commonly used in most wind-solar energy systems to balance the voltage and frequency instability during load variations. One of the innovative energy storage systems is the compressed air energy storage system (CAES) for wind and solar hybrid energy system and this technology is the key focus in this research study. The aim of this research was to examine the system configuration of the CAES system through modelling and experimental approach with PID controller design for regulating the voltage and frequency under different load conditions. The essential elements and the entire system have been presented in this work as thorough modelling in the MATLAB/Simulink environment for different load conditions. The developed model was tested through an experimental workbench using the developed prototype of the compressed air storage in the Siemens Lab at DeKUT and explored the consequence of the working parameters on the system proficiency and the model accuracy. The performance of the system for the developed prototype of CAES system was validated using results from an experimental workbench with MATLAB/Simulink R2022b simulation. The modeling and experimental results, shows that the frequency fluctuation and voltage drop of the developed CAES system during load variations was governed by the I/P converter using a PID_Compact controller programed in the TIA Portal V17 software and downloaded into PLC S7 1200. Based on these results, the model can be applied as a basis for the performance assessment of the compressed air energy storage system so as to be included in current technology of wind and solar hybrid energy systems.
文摘The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A feedback control law for attitude tracking is firstly developed by using Lyapunov approach, and then a torque based control law of the flywheel is studied. The control torque vector of the flywheel is decomposed into three parts which are orthogonal to one another by using the method of singularity value decomposition (SVD). One part is used to provide the attitude control torque, another part is used to store energy with given power, and the last part is used to accomplish wheel speed equalization to avoid wheel saturation caused by large difference among the wheel spin rates. A management scheme for energy storage power using kinetic energy feedback is proposed to keep energy balance, which can avoid wheel saturation caused by superfluous energy. Numerical simulation results demonstrate the effectiveness of the control scheme.