Centrifugal casting was applied to produce cylindrical castings using SiCp/Al composite slurry,which contained 20%SiC particles.The castings comprised a particle free zone and a particle rich zone.The amount of SiC pa...Centrifugal casting was applied to produce cylindrical castings using SiCp/Al composite slurry,which contained 20%SiC particles.The castings comprised a particle free zone and a particle rich zone.The amount of SiC particles had a dramatic transformation from the particle rich zone to the particle free zone,and the maximum content of SiC particles in the particle rich zone reached up to 40 vol%.The ultimate tensile strength(UTS) of the as-cast SiCp / Al composites in the particle rich zone was 143 MPa,and the fracture was caused by the desorption of SiC particles from matrix alloy.The coefficient of thermal expansion(CTE) of the SiC_p / Al composites in the range of 20 and 100 ℃ was determined as 16.67×10^(-6) s^(-1),and the experimental CTE was lower than the predicted data based on the Kerner's model.The results show that the decrease in CTE in the case of the composites at high temperature stage can be attributed to the solute concentration of Si in Al and the plastic deformation of the matrix alloy in the composites with void architecture.展开更多
In the present study,the chemical and mechanical properties and the thermal expansion of a carbon nanotube(CNT)-based crystalline nano-aluminum(nano Al) composite were reported.The properties of nanocomposites wer...In the present study,the chemical and mechanical properties and the thermal expansion of a carbon nanotube(CNT)-based crystalline nano-aluminum(nano Al) composite were reported.The properties of nanocomposites were tailored by incorporating CNTs into the nano Al matrix using a physical mixing method.The elastic moduli and the coefficient of thermal expansion(CTE) of the nanocomposites were also estimated to understand the effects of CNT reinforcement in the Al matrix.Microstructural characterization of the nanocomposite reveals that the CNTs are dispersed and embedded in the Al matrix.The experimental results indicate that the incorporation of CNTs into the nano Al matrix results in the increase in hardness and elastic modulus along with a concomitant decrease in the coefficient of thermal expansion The hardness and elastic modulus of the nanocomposite increase by 21%and 20%,respectively,upon CNT addition.The CTE of CNT/A1 nanocomposite decreases to 70%compared with that of nano Al.展开更多
The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were ...The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.展开更多
Middle reinforcement content SiCp/Al composites(Vp=30%, 35% and 40%) for precision optical systems applications were fabricated by powder metallurgy technology. The composites were free of porosity and SiC particles...Middle reinforcement content SiCp/Al composites(Vp=30%, 35% and 40%) for precision optical systems applications were fabricated by powder metallurgy technology. The composites were free of porosity and SiC particles distributed uniformly in the composites. The mean linear coefficients of thermal expansion(20-100 ℃) of SiCp/Al composites ranged from 11.6×10-6 to 13.3×10-6 K-1 and decreased with an increase in volume fraction of SiC content. The experimental coeffi cients of thermal expansion agreed well with predicted values based on Kerner's model. The Brinell hardness increased from 116 to 147, and the modulus increased from 99 to 112 GPa for the corresponding composites. The tensile strengths were higher than 320 MPa, but no signifi cant increasing trend between tensile strength and SiC content was observed.展开更多
Thermal expansion characteristics of semimetal nylon composites (nylon 1010 incorporated with metal oxides) were analyzed with thermal expansion instrument. The changes of composite weight after being heated and the h...Thermal expansion characteristics of semimetal nylon composites (nylon 1010 incorporated with metal oxides) were analyzed with thermal expansion instrument. The changes of composite weight after being heated and the heat absorption and release of the composites were analyzed by carrying out TG-DSC experiments. Experimental results show that the average thermal expansion coefficient of the composites rises as the average diameter of the metal oxides decrease from room temperature to 160 ℃. Thermal dynamics and physical properties of the nylon composites change with the addition of the oxides; the crystallization temperature rises from 180 ℃ of pure nylon to 190 ℃ (maximum) and the melting point of the oxide composites also increases continuously with the addition of the oxides. The water content of the oxide/nylon composite is related to the kind and content of the oxide. The water content reaches its maximum when the content of oxide is 10%, and the 10% Al2O3/nylon composite has a water absorption ratio up to 1%.展开更多
Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger ...Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.展开更多
The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of...The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.展开更多
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp...A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.展开更多
In the present work, the coefficients of thermal expansion(CTEs) of unidirectional(UD)fiber-reinforced composites are studied. First, an attempt is made to propose a model to predict both longitudinal and transver...In the present work, the coefficients of thermal expansion(CTEs) of unidirectional(UD)fiber-reinforced composites are studied. First, an attempt is made to propose a model to predict both longitudinal and transverse CTEs of UD composites by means of thermo-elastic mechanics analysis. The proposed model is supposed to be a concentric cylinder with a transversely isotropic fiber embedded in an isotropic matrix, and it is subjected to a uniform temperature change. Then a concise and explicit formula is offered for each CTE. Finally, some finite element(FE) models are created by a finite element program MSC. Patran according to different material systems and fiber volume fractions. In addition, the available experimental data and results of other analytical solutions of CTEs are presented. Comparisons are made among the results of the cylinder model,the finite element method(FEM), experiments, and other solutions, which show that the predicted CTEs by the new model are in good agreement with the experimental data. In particular, transverse CTEs generally offer better agreements than those predicted by most of other solutions.展开更多
We present a model of the universe based on the theory that space consists of energy quanta. We use the thermodynamics of an ideal gas to elucidate the composition, accelerated expansion, and the nature of dark energy...We present a model of the universe based on the theory that space consists of energy quanta. We use the thermodynamics of an ideal gas to elucidate the composition, accelerated expansion, and the nature of dark energy and dark matter without an Inflation stage. From wave-particle duality, the space quanta can be treated as an ideal gas. The universe started from an atomic size volume at very high temperature and pressure. Upon expansion and cooling, phase transitions occurred to form fundamental particles, and matter. These nucleate and grew into stars, galaxies, and clusters due to gravity. From cooling data, a thermodynamic phase diagram of cosmic composition was constructed which yielded a correlation between dark energy and the energy of space. Using Friedmann’s equations, our model fits well the Williamson Microwave Anisotropy Platform (WMAP) data on cosmic composition with an equation of state parameter, <em>w</em> = -0.7. The dominance of dark energy started at 7.25 × 10<sup>9</sup> years, in good agreement with Baryon Oscillation Spectroscopic Survey (BOSS) measurements. The expansion of space can be attributed to a scalar space field. Dark Matter is identified as a plasma form of matter similar to that which existed before recombination and during the reionization epoch. The expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang;it accelerated thereafter. A negative pressure for Dark Energy is required to sustain it;this is consistent with the theory of General Relativity and energy conservation. We propose a mechanism for the acceleration as due to the consolidation of matter to form Black Holes and other massive compact objects. The resulting reduction in gravitational potential energy feeds back energy for the acceleration. It is not due to a repulsive form of gravity. Our Quantum Space model fits well the observed behavior of the universe and resolves the outstanding questions in Inflationary Big Bang Theory.展开更多
Magnesium matrix composites reinforced with AlN particles were fabricated by the powder metallurgy technique.Different mixing methods were used in this study to control the distribution of Al N particles.The microstru...Magnesium matrix composites reinforced with AlN particles were fabricated by the powder metallurgy technique.Different mixing methods were used in this study to control the distribution of Al N particles.The microstructure,thermal diffusivity and thermal expansion of the Mg–Al/Al N composites using different mixing methods were investigated.The results showed that the intergranular and intragranular distributions of Al N particles were obtained,respectively,by controlling the mixing methods.The composite with intragranular particles exhibited lower thermal diffusivity because of the existences of more interfaces,defects and grain boundaries,which acted as scattering centers and reduced the mean free path of electrons and phonons.The existence of Al N particles lowered the coefficient of thermal expansion(CTE)and enhanced the dimensional stability of the composites.And the use of the improved mixing method further reduced the CTE of Mg–Al/Al N composites.展开更多
This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pr...This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pressure infiltration.The fracture surfaces,interface microstructures by metal electro-etching and interfacial thermal conductance of the composites prepared by two methods were compared.The results reveal that Ti coating on diamond surfaces and only12.2 wt% Si addition into Al matrix could both improve the interfacial bonding and increase the TCs of the composites.But the Ti coating layer introduces more interfacial thermal barrier at the diamond/Al interface compared to adding 12.2 wt% Si into Al matrix.The diamond/Al composite with 12.2 wt% Si addition exhibits maximum TC of 534 W·m^-1·K^-1and a very low CTE of 8.9×10^-6K^-1,while the coating Ti-diamond/Al composite has a TC of 514 W·m^-1·K^-1 and a CTE of 11.0×10^-6K^-1.展开更多
Influence of cryogenic thermal cycling treatment (from -120 ℃ to 120 ℃ at 1.3 × 10^-3 Pa) on the thermo- physical properties including thermal conductivity (TC), thermal diffusivity (TD), specific heat ...Influence of cryogenic thermal cycling treatment (from -120 ℃ to 120 ℃ at 1.3 × 10^-3 Pa) on the thermo- physical properties including thermal conductivity (TC), thermal diffusivity (TD), specific heat (SH) and coefficient of thermal expansion (CTE) ranging from room temperature to 1900 ℃ of carbon/carbon (C/C) composites in x-y and z directions were studied. Test results showed that fiber/matrix interracial debonding, fiber pull-out and microcracks occurred after the cryogenic thermal treatment and they increased significantly with the cycle number increasing, while cycled more than 30 times, the space ofmicrodefects reduced obviously due to the accumulation of cyclic thermal stress. TC, TD, SH and CTE of the cryogenic thermal cycling treated C/C composites were first decreased and then increased in both directions (x-y and z directions) with the increase of thermal cycles. A model regarding the heat conduction in cryogenic thermal cycling treated C/C composites was proposed.展开更多
基金Funded by the National Natural Science Foundation of China(No.51174244)the Foundational and Cutting-edge Research Plan of Chongqing,China(No.csts2013jcyj A50014)the Fundamental Research Funds for Central University,China(No.CDJZR12240056)
文摘Centrifugal casting was applied to produce cylindrical castings using SiCp/Al composite slurry,which contained 20%SiC particles.The castings comprised a particle free zone and a particle rich zone.The amount of SiC particles had a dramatic transformation from the particle rich zone to the particle free zone,and the maximum content of SiC particles in the particle rich zone reached up to 40 vol%.The ultimate tensile strength(UTS) of the as-cast SiCp / Al composites in the particle rich zone was 143 MPa,and the fracture was caused by the desorption of SiC particles from matrix alloy.The coefficient of thermal expansion(CTE) of the SiC_p / Al composites in the range of 20 and 100 ℃ was determined as 16.67×10^(-6) s^(-1),and the experimental CTE was lower than the predicted data based on the Kerner's model.The results show that the decrease in CTE in the case of the composites at high temperature stage can be attributed to the solute concentration of Si in Al and the plastic deformation of the matrix alloy in the composites with void architecture.
基金supported by the Defence Research and Development Organization, New Delhi (No.ARMREB/CDSW/2011/135)
文摘In the present study,the chemical and mechanical properties and the thermal expansion of a carbon nanotube(CNT)-based crystalline nano-aluminum(nano Al) composite were reported.The properties of nanocomposites were tailored by incorporating CNTs into the nano Al matrix using a physical mixing method.The elastic moduli and the coefficient of thermal expansion(CTE) of the nanocomposites were also estimated to understand the effects of CNT reinforcement in the Al matrix.Microstructural characterization of the nanocomposite reveals that the CNTs are dispersed and embedded in the Al matrix.The experimental results indicate that the incorporation of CNTs into the nano Al matrix results in the increase in hardness and elastic modulus along with a concomitant decrease in the coefficient of thermal expansion The hardness and elastic modulus of the nanocomposite increase by 21%and 20%,respectively,upon CNT addition.The CTE of CNT/A1 nanocomposite decreases to 70%compared with that of nano Al.
基金the financial assistance received from the Department of Science and Technology(Government of India)for conducting this investigation(Project-SR/FTP/PS-054/2011(G))
文摘The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.
基金Funded by the National Natural Science Foundation of China(51371077)
文摘Middle reinforcement content SiCp/Al composites(Vp=30%, 35% and 40%) for precision optical systems applications were fabricated by powder metallurgy technology. The composites were free of porosity and SiC particles distributed uniformly in the composites. The mean linear coefficients of thermal expansion(20-100 ℃) of SiCp/Al composites ranged from 11.6×10-6 to 13.3×10-6 K-1 and decreased with an increase in volume fraction of SiC content. The experimental coeffi cients of thermal expansion agreed well with predicted values based on Kerner's model. The Brinell hardness increased from 116 to 147, and the modulus increased from 99 to 112 GPa for the corresponding composites. The tensile strengths were higher than 320 MPa, but no signifi cant increasing trend between tensile strength and SiC content was observed.
基金Projects 50225519 supported by the National Natural Science Foundation of China and 0E4458the Youth Science Foundation of China University of Mining & Technology
文摘Thermal expansion characteristics of semimetal nylon composites (nylon 1010 incorporated with metal oxides) were analyzed with thermal expansion instrument. The changes of composite weight after being heated and the heat absorption and release of the composites were analyzed by carrying out TG-DSC experiments. Experimental results show that the average thermal expansion coefficient of the composites rises as the average diameter of the metal oxides decrease from room temperature to 160 ℃. Thermal dynamics and physical properties of the nylon composites change with the addition of the oxides; the crystallization temperature rises from 180 ℃ of pure nylon to 190 ℃ (maximum) and the melting point of the oxide composites also increases continuously with the addition of the oxides. The water content of the oxide/nylon composite is related to the kind and content of the oxide. The water content reaches its maximum when the content of oxide is 10%, and the 10% Al2O3/nylon composite has a water absorption ratio up to 1%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974183 and 11104252)the Doctoral Fund of the Ministry of Education of China(Grant No.20114101110003)+2 种基金the Fund for Science&Technology Innovation Team of Zhengzhou,China(Grant No.112PCXTD337)the Industrial Science and Technology Research Projects of Kaifeng,Henan Province,China(Grant No.1501049)the Key Research Projects of Henan Higher Education Institutions,China(Grant No.18A140014)
文摘Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.
文摘The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.
基金Project supported by the National Natural Science Foundation of China Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the National Natural Science Foundation of China(No.12202451)。
文摘A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.
文摘In the present work, the coefficients of thermal expansion(CTEs) of unidirectional(UD)fiber-reinforced composites are studied. First, an attempt is made to propose a model to predict both longitudinal and transverse CTEs of UD composites by means of thermo-elastic mechanics analysis. The proposed model is supposed to be a concentric cylinder with a transversely isotropic fiber embedded in an isotropic matrix, and it is subjected to a uniform temperature change. Then a concise and explicit formula is offered for each CTE. Finally, some finite element(FE) models are created by a finite element program MSC. Patran according to different material systems and fiber volume fractions. In addition, the available experimental data and results of other analytical solutions of CTEs are presented. Comparisons are made among the results of the cylinder model,the finite element method(FEM), experiments, and other solutions, which show that the predicted CTEs by the new model are in good agreement with the experimental data. In particular, transverse CTEs generally offer better agreements than those predicted by most of other solutions.
文摘We present a model of the universe based on the theory that space consists of energy quanta. We use the thermodynamics of an ideal gas to elucidate the composition, accelerated expansion, and the nature of dark energy and dark matter without an Inflation stage. From wave-particle duality, the space quanta can be treated as an ideal gas. The universe started from an atomic size volume at very high temperature and pressure. Upon expansion and cooling, phase transitions occurred to form fundamental particles, and matter. These nucleate and grew into stars, galaxies, and clusters due to gravity. From cooling data, a thermodynamic phase diagram of cosmic composition was constructed which yielded a correlation between dark energy and the energy of space. Using Friedmann’s equations, our model fits well the Williamson Microwave Anisotropy Platform (WMAP) data on cosmic composition with an equation of state parameter, <em>w</em> = -0.7. The dominance of dark energy started at 7.25 × 10<sup>9</sup> years, in good agreement with Baryon Oscillation Spectroscopic Survey (BOSS) measurements. The expansion of space can be attributed to a scalar space field. Dark Matter is identified as a plasma form of matter similar to that which existed before recombination and during the reionization epoch. The expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang;it accelerated thereafter. A negative pressure for Dark Energy is required to sustain it;this is consistent with the theory of General Relativity and energy conservation. We propose a mechanism for the acceleration as due to the consolidation of matter to form Black Holes and other massive compact objects. The resulting reduction in gravitational potential energy feeds back energy for the acceleration. It is not due to a repulsive form of gravity. Our Quantum Space model fits well the observed behavior of the universe and resolves the outstanding questions in Inflationary Big Bang Theory.
文摘Magnesium matrix composites reinforced with AlN particles were fabricated by the powder metallurgy technique.Different mixing methods were used in this study to control the distribution of Al N particles.The microstructure,thermal diffusivity and thermal expansion of the Mg–Al/Al N composites using different mixing methods were investigated.The results showed that the intergranular and intragranular distributions of Al N particles were obtained,respectively,by controlling the mixing methods.The composite with intragranular particles exhibited lower thermal diffusivity because of the existences of more interfaces,defects and grain boundaries,which acted as scattering centers and reduced the mean free path of electrons and phonons.The existence of Al N particles lowered the coefficient of thermal expansion(CTE)and enhanced the dimensional stability of the composites.And the use of the improved mixing method further reduced the CTE of Mg–Al/Al N composites.
基金financially supported by the National Natural Science Foundation of China (No.51274040)the Fundamental Research Funds for the Central Universities (No.FRF-TP-10-003B)
文摘This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pressure infiltration.The fracture surfaces,interface microstructures by metal electro-etching and interfacial thermal conductance of the composites prepared by two methods were compared.The results reveal that Ti coating on diamond surfaces and only12.2 wt% Si addition into Al matrix could both improve the interfacial bonding and increase the TCs of the composites.But the Ti coating layer introduces more interfacial thermal barrier at the diamond/Al interface compared to adding 12.2 wt% Si into Al matrix.The diamond/Al composite with 12.2 wt% Si addition exhibits maximum TC of 534 W·m^-1·K^-1and a very low CTE of 8.9×10^-6K^-1,while the coating Ti-diamond/Al composite has a TC of 514 W·m^-1·K^-1 and a CTE of 11.0×10^-6K^-1.
基金supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU) of China (No. 105QP-2014)the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JM5247)
文摘Influence of cryogenic thermal cycling treatment (from -120 ℃ to 120 ℃ at 1.3 × 10^-3 Pa) on the thermo- physical properties including thermal conductivity (TC), thermal diffusivity (TD), specific heat (SH) and coefficient of thermal expansion (CTE) ranging from room temperature to 1900 ℃ of carbon/carbon (C/C) composites in x-y and z directions were studied. Test results showed that fiber/matrix interracial debonding, fiber pull-out and microcracks occurred after the cryogenic thermal treatment and they increased significantly with the cycle number increasing, while cycled more than 30 times, the space ofmicrodefects reduced obviously due to the accumulation of cyclic thermal stress. TC, TD, SH and CTE of the cryogenic thermal cycling treated C/C composites were first decreased and then increased in both directions (x-y and z directions) with the increase of thermal cycles. A model regarding the heat conduction in cryogenic thermal cycling treated C/C composites was proposed.