A method to improve the low-velocity impact performance of composite laminate is proposed, and a multi-island genetic algorithm is used for the optimization of composite laminate stacking sequence under low-velocity i...A method to improve the low-velocity impact performance of composite laminate is proposed, and a multi-island genetic algorithm is used for the optimization of composite laminate stacking sequence under low-velocity impact loads based on a 2D dynamic impact finite element analysis. Low-velocity impact tests and compression-after impact(CAI) tests have been conducted to verify the effectiveness of optimization method. Experimental results show that the impact damage areas of the optimized laminate have been reduced by 42.1% compared to the baseline specimen, and the residual compression strength has been increased by 10.79%, from baseline specimen 156.97 MPa to optimized 173.91 MPa. The tests result shows that optimization method can effectively enhance the impact performances of the laminate.展开更多
In order to decrease the number of design variables and improve the efficiency of com- posite structure optimal design, a single-level composite structure optimization method based on a tapered model is presented. Com...In order to decrease the number of design variables and improve the efficiency of com- posite structure optimal design, a single-level composite structure optimization method based on a tapered model is presented. Compared with the conventional multi-level composite structure opti- mization method, this single-level method has many advantages. First, by using a distance variable and a ply group variable, the number of design variables is decreased evidently and independent with the density of sub-regions, which makes the single-level method very suitable for large-scale composite structures. Second, it is very convenient to optimize laminate thickness and stacking sequence in the same level, which probably improves the quality of optimal result. Third, ply con-tinuity can be guaranteed between sub-regions in the single-level method, which could reduce stress concentration and manufacturing difficulty. An example of a composite wing is used to demonstrate the advantages and competence of the single-level method proposed.展开更多
基金Funded by the National Natural Science Foundation of China(No.51275393)the Fundamental Research Funds for the Central Universities(No.xjj2017160)
文摘A method to improve the low-velocity impact performance of composite laminate is proposed, and a multi-island genetic algorithm is used for the optimization of composite laminate stacking sequence under low-velocity impact loads based on a 2D dynamic impact finite element analysis. Low-velocity impact tests and compression-after impact(CAI) tests have been conducted to verify the effectiveness of optimization method. Experimental results show that the impact damage areas of the optimized laminate have been reduced by 42.1% compared to the baseline specimen, and the residual compression strength has been increased by 10.79%, from baseline specimen 156.97 MPa to optimized 173.91 MPa. The tests result shows that optimization method can effectively enhance the impact performances of the laminate.
基金supported by National Natural Science Foundation of China(No.1110216/A020312)Foundation Sciences of Northwestern Polytechnical University(No.JC20120210)
文摘In order to decrease the number of design variables and improve the efficiency of com- posite structure optimal design, a single-level composite structure optimization method based on a tapered model is presented. Compared with the conventional multi-level composite structure opti- mization method, this single-level method has many advantages. First, by using a distance variable and a ply group variable, the number of design variables is decreased evidently and independent with the density of sub-regions, which makes the single-level method very suitable for large-scale composite structures. Second, it is very convenient to optimize laminate thickness and stacking sequence in the same level, which probably improves the quality of optimal result. Third, ply con-tinuity can be guaranteed between sub-regions in the single-level method, which could reduce stress concentration and manufacturing difficulty. An example of a composite wing is used to demonstrate the advantages and competence of the single-level method proposed.