期刊文献+
共找到418,312篇文章
< 1 2 250 >
每页显示 20 50 100
Gypsum-based Silica Gel Humidity-controlling Composite Materials:Preparation,Characterization,and Performance
1
作者 李曦 冉茂宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期337-344,共8页
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos... Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions. 展开更多
关键词 humidity controlling composite materials GYPSUM silica gel
下载PDF
Effect of the Retarder on Initial Hydration and Mechanical Properties of the"one-step"Alkaliactivated Composite Cementitious Materials
2
作者 DING Rui HE Yue +3 位作者 LI Xingchen LI Han TIAN Hao WANG Hongen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1199-1213,共15页
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a... This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM. 展开更多
关键词 "one-step"alkali-activated composite cementitious materials solid activator hydration mechanism RETARDER retarding mechanism
下载PDF
The Evaluation of the Dietary Habits Influence on the Microhardness of Gingiva-Coloured Composite and Acrylic Denture Base Materials
3
作者 Hayriye Yasemin Yay Kuscu Ilhan Gun 《Advances in Nanoparticles》 CAS 2024年第3期79-95,共17页
Purpose: The study investigated the impact of dietary habits, specifically soda, milk kefir, water kefir, almond milk, and distilled water (control) consumption, on the microhardness of gingiva-coloured composite and ... Purpose: The study investigated the impact of dietary habits, specifically soda, milk kefir, water kefir, almond milk, and distilled water (control) consumption, on the microhardness of gingiva-coloured composite and acrylic denture bases. Methods: Materials included gingiva-coloured composite (Fusion Universal G1), acrylic (Imicryl), and subdivided Procryla group. Subgroups comprised 15 and 30-minute heat polymerized (Pro15, Pro30), and 1 wt% (Pro1Z) and 3 wt% (Pro3Z) zirconium added groups. Immersed in beverages for 1, 7, and 14 days, pH and microhardness were assessed. SEM examined random samples. Statistical analysis used repeated measures ANOVA, and post hoc tests (p Results: The gingiva-coloured composites displayed noteworthy time-associated microhardness changes (p 0.05). Despite variable pH levels in beverages, no substantial group interaction effects were observed (p > 0.05). Initial microhardness rankings shifted after a 14-day immersion. Conclusions: Gingiva-coloured composite exhibited the highest microhardness pre- and post-immersion, followed by Procryla30 and Imicryl groups. . 展开更多
关键词 Gingiva-Coloured composite ACRYLIC Denture Base materials Hybrid Prosthesis MICROHARDNESS Beverages
下载PDF
Physical and Thermo-Mechanical Properties of Composite Materials Based on Raw Earth and Crushed Palm Leaf Fibers (Borassus aethiopum)
4
作者 Mouhamadou Nabi Kane Mapathe Ndiaye +1 位作者 Pape Moussa Touré Adama Dione 《Materials Sciences and Applications》 2024年第9期358-377,共20页
The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples... The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples of raw earth from 3 sites were taken in the commune of Mlomp. Geotechnical tests showed that the raw earth samples from sites 2 and 3 have more clay fraction while site 1 contains more sand. The fact of integrating fibers from crushed palm leaves (Borassus aethiopum) (2%, 4% and 6%) into the 3 raw earth samples reduced the mechanical resistance to compression and traction of the 3 raw earths. The experimental results of thermal tests on samples of earth mixtures with crushed Palma leaf fibers show a decrease in thermal conductivity as well as thermal effusivity as the percentages increase (2%, 4% and 6%) of fibers in raw earth for the 3 sites. This shows that this renewable composite material can help improve the thermal insulation of building envelopes. 展开更多
关键词 Raw Earth Palma Leaf Fibers Ecological composite materials PHYSICAL Thermo-Mechanical Thermal Conductivity Thermal Effusivity
下载PDF
Research Progress of Carbon-Silicone Composite Materials
5
作者 Beibei Liu Rongjie Kan 《Expert Review of Chinese Chemical》 2024年第2期1-7,共7页
Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistan... Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistance,aging resistance,high and low temperature resistance and chemical corrosion resistance.Moreover,silicone materials have process-able properties,simple forming process,good mechanical property,non-toxic and pollution-free.Therefore,silicone has been widely concerned by researchers at home and abroad.In this paper,the main research progress and application directions of carbon-silicone composite at home and abroad in recent years are reviewed. 展开更多
关键词 carbon materials GRAPHEME SILICONE composite materials
下载PDF
Progress on the application of graphene-based composites toward energetic materials:A review
6
作者 Ting Zhang Xiaoming Gao +4 位作者 Jiachen Li Libai Xiao Hongxu Gao Fengqi Zhao Haixia Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期95-116,共22页
Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and ... Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and mechanical properties.Recently,the application of graphene-based composites in energetic materials has received extensive attention.This review mainly summarizes the applications of graphene and graphene-based nanomaterials in energetic materials.The effects of these materials on the thermal stability,sensitivity,mechanical property,ignition and combustion of energetic materials were discussed.Furthermore,the progress of functionalized modification of graphene has been summarized,including covalent bonding modification and doping modification.These studies show that graphenebased materials exhibit excellent performances and might emerge as promising candidate for energetic materials. 展开更多
关键词 Graphene Desensitization Thermal decomposition Catalytic combustion Energetic materials
下载PDF
Numerical study of directional heat transfer in composite materials via controllable carbon fiber distribution
7
作者 SHI Lei HUANG Cun-wen +5 位作者 YE Jian-ling WEN Shuang LIU Su-ping LI Fen-qiang ZHOU Tian SUN Zhi-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1945-1955,共11页
Carbon fiber reinforced polyamide 12(CF/PA12),a new material renowned for its excellent mechanical and thermal properties,has drawn significant industry attention.Using the steady-state research to heat transfer,a ser... Carbon fiber reinforced polyamide 12(CF/PA12),a new material renowned for its excellent mechanical and thermal properties,has drawn significant industry attention.Using the steady-state research to heat transfer,a series of simulations to investigate the heat transfer properties of CF/PA12 were conducted in this study.Firstly,by building two-and three-dimensional models,the effects of the porosity,carbon fiber content,and arrangement on the heat transfer of CF/PA12 were examined.A validation of the simulation model was carried out and the findings were consistent with those of the experiment.Then,the simulation results using the above models showed that within the volume fraction from 0% to 28%,the thermal conductivity of CF/PA12 increased greatly from 0.0242 W/(m·K)to 10.8848 W/(m·K).The increasing porosity had little influence on heat transfer characteristic of CF/PA12.The direction of the carbon fiber arrangement affects the heat transfer impact,and optimal outcomes were achieved when the heat flow direction was parallel to the carbon fiber.This research contributes to improving the production methods and broadening the application scenarios of composite materials. 展开更多
关键词 heat transfer thermal conductivity carbon fiber-based composite
下载PDF
Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries:A review
8
作者 Liu Yang Shuaining Li +6 位作者 Yuming Zhang Hongbo Feng Jiangpeng Li Xinyu Zhang Huai Guan Long Kong Zhaohui Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期30-45,I0002,共17页
Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-e... Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries. 展开更多
关键词 Lithium-ion batteries Silicon/carbon composites Molecular scale Nanoscale MICROSCALE
下载PDF
Copper-Free Resin-Based Braking Materials:A New Approach for Substituting Copper with Fly-Ash Cenospheres in Composites
9
作者 Kaikui Zheng Youxi Lin +2 位作者 Shanmin You Zhiying Ren Jianmeng Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期401-412,共12页
Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials with... Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs. 展开更多
关键词 Fly-ash cenospheres Braking materials Friction and wear Heat-fade resistance Wear form
下载PDF
Research Progress on the Preparation of Inorganic/Natural Materials Composite Microspheres
10
作者 Jing Cao Chaojie Feng Wen Duan 《Expert Review of Chinese Chemical》 2024年第1期15-20,共6页
Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them su... Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them suitable for preparing microspheres.Inorganic materials(mainly inorganic minerals)have excellent mechanical properties and are inexpensive and easy to obtain.Through the coupling and hybridization of natural polymers and inorganic materials,they can complement each other's advantages and synergistically enhance efficiency,resulting in many excellent physical and chemical properties.Inorganic materials/natural polymer composite microspheres can be prepared by modifying natural polymers with inorganic materials through various methods such as emulsification crosslinking,solution mixing,in-situ synthesis,extrusion,etc.The application of inorganic materials/natural polymer composite microspheres in drug delivery systems has significant sustained-release effects,is safe and non-toxic,and the cost of carrier materials is relatively low,which has certain significance for the development of new drug carriers.This article reviews the recent research on the preparation,drug loading and release properties of inorganic material/natural polymer composite microspheres,analyzes the advantages and disadvantages of commonly used preparation methods,and looks forward to the development direction of composite microspheres. 展开更多
关键词 natural polymer materials composite microspheres PREPARATION research progress
下载PDF
Enhanced properties of stone coal-based composite phase change materials for thermal energy storage
11
作者 Baoshan Xie Huan Ma +1 位作者 Chuanchang Li Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期206-215,共10页
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential... Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals. 展开更多
关键词 thermal energy storage phase change material stone coal vanadium extraction secondary utilization
下载PDF
Sustainable Biocomposites Materials for Automotive Brake Pad Application:An Overview
12
作者 Joseph O.Dirisu Imhade P.Okokpujie +4 位作者 Olufunmilayo O.Joseph Sunday O.Oyedepo Oluwasegun Falodun Lagouge K.Tartibu Firdaussi D.Shehu 《Journal of Renewable Materials》 EI CAS 2024年第3期485-511,共27页
Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscri... Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land.This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads.Materials made by biocomposite,rather than fossil fuels,will be favoured.A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements.The development of materials with diverse compositions and varying proportions is now conceivable,and these materials can be permanently connected in fully regulated processes.This explanation demonstrates that all of these variables affect friction coefficient,resistance to wear from friction and high temperatures,and the operating life of brake pads to varying degrees.In this study,renewable materials for the matrix and reinforcement are screened to determine which have sufficient strength,coefficient of friction,wear resistance properties,and reasonable costs,making them a feasible option for a green composite.The most significant,intriguing,and unusual materials used in manufacturing brake pads are gathered in this review,which also analyzes how they affect the tribological characteristics of the pads. 展开更多
关键词 Asbestos brake pad BIOcompositeS green composite mechanical properties natural reinforcement WASTE
下载PDF
Physical and Chemical Properties of Horns Sheaths Particles for the Manufacture of Composite Materials
13
作者 Tawe Laynde Zakari Yaou +2 位作者 Karga Tapsia Lionel Konai Noel Danwe Raidandi 《Journal of Materials Science and Chemical Engineering》 2024年第5期1-9,共9页
Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated betwe... Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated between 0.586 g/cm<sup>3</sup> and 0.732 g/cm<sup>3</sup>, the swelling rate (12%), and one chemical characterization that permitted us to determine the rate of dry matters (97.05%), of mineral matters (2.5%), of protein matters (94.52%). From these weak values, it can easily be seen that cow horn case doesn’t absorb much water and improve the mechanical characteristics of the composite;the high rate of protein shows that keratin which is the structural molecule favors its gripping as reinforcing element in the manufacturing of composite materials. 展开更多
关键词 HORNS Fibers Polymer Loads Physical Properties Chemical Composition
下载PDF
Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation 被引量:3
14
作者 Yi Liu Jingnan Qin +2 位作者 Linlin Lu Jie Xu Xiaolei Su 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期525-535,共11页
Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing perform... Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material. 展开更多
关键词 biomass carbon Ag@PC composite material frequency selective surface electromagnetic wave absorbing property
下载PDF
Deformation Characteristics and Mechanical Properties of Ti/Al Bimetallic Composite Materials Fabricated by Wire Plus Arc Additive Manufacturing
15
作者 夏玉峰 ZHANG Xue +2 位作者 CHEN Lei JIANG Xianhong LIAO Hailong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期885-892,共8页
We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After ... We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After compression deformation,allαstructures of titanium were compacted with the emergence of Widmanstatten structures.Coarsened coloniesαof titanium were elongated and waved along the original growth direction,resulting in anisotropy of grains.Pores and Ti/Al intermetallic compounds of aluminum are significantly decreased after hot compression.Meanwhile,a good bonding interface between titanium and aluminum is obtained after hot compression,and the element diffusion is more intense.In addition,the mechanical properties and fracture behaviors of Ti/Al composite material with different clad ratio that is defined as the ratio of the thickness of titanium to that of the Ti/Al composite material are investigated by uniaxial tensile test.The experimental results show that the ultimate tensile strength of Ti/Al composite material is between that of single deposited titanium and aluminum,while the elongation of Ti/Al composite material with low clad ratio is lower than that of single aluminum due to the metallurgical reaction.As the clad ratio increases,the two component layers are harder to separate during deformation,which is resulted from the decrease of the inward contraction stress of three-dimensional stress caused by necking of aluminum.This work may promote the engineering application of Ti/Al bimetallic structures. 展开更多
关键词 wire plus arc additive manufacturing aluminium alloy titanium alloy bimetallic composite materials deformation mechanical properties
下载PDF
Mechanical behavior of entangled metallic wire materials-polyurethane interpenetrating composites
16
作者 Xiao-yuan Zheng Zhi-ying Ren +2 位作者 Hong-bai Bai Zhang-bin Wu You-song Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期120-136,共17页
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre... Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites. 展开更多
关键词 Entangled metallic wire material composites materials Damping property STIFFNESS Fatigue characteristics
下载PDF
Machine learning-based stiffness optimization of digital composite metamaterials with desired positive or negative Poisson's ratio
17
作者 Xihang Jiang Fan Liu Lifeng Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期424-431,共8页
Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness ... Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures.In this work,a convolutional neural network(CNN)based self-learning multi-objective optimization is performed to design digital composite materials.The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials,along with their corresponding Poisson's ratios and stiffness values.Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint.Furthermore,we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio(negative,zero,or positive).The optimized designs have been successfully and efficiently obtained,and their validity has been confirmed through finite element analysis results.This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization. 展开更多
关键词 Digital composite materials METAmaterials Machine learning Convolutional neural network(CNN) Poisson's ratio STIFFNESS
下载PDF
Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin
18
作者 Jinlong Shang 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2315-2327,共13页
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr... In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%. 展开更多
关键词 Polymer aerospace materials corrosion carbonfiber composite material epoxy resin mechanical properties thermal analysis
下载PDF
Effect of Polyaniline/manganese Dioxide Composite on the Thermoelectric Effect of Cement-based Materials 被引量:1
19
作者 季涛 LIAO Xiao +4 位作者 HE Yan 张士萍 ZHANG Xiaoying ZHANG Xiong LI Weihua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期109-116,共8页
To enhance the thermoelectric effect of cement-based materials,conductive polyaniline(PANI)modified MnO_(2)powder was synthesized and used as a thermoelectric component in the cement composites.The nanostructured PANI... To enhance the thermoelectric effect of cement-based materials,conductive polyaniline(PANI)modified MnO_(2)powder was synthesized and used as a thermoelectric component in the cement composites.The nanostructured PANI was deposited on the surface of the nanorod-shapedα-MnO_(2)particle and the weight ratio of PANI to MnO_(2)was 22.3:77.7 in the composite.The synthesized PANI/MnO_(2)composite was nanostructured according to the SEM image.The test results of the thermoelectric properties proved that the PANI/MnO_(2)composite was effective as the Seebeck coefficient and electrical conductivity values of the cement composites with PANI/MnO_(2)inside were 3-4 orders of magnitude higher than those of pure cement paste and the thermal conductivity values of these cement samples were similar.The obtained maximum figure of merit(ZT)value(2.75×10^(-3))was much larger than that of conductive materials reinforced cement-based composites.The thermoelectric effect of cement composites is mainly enhanced by the increased Seebeck coefficient and electrical conductivity in this work. 展开更多
关键词 PANI/MnO_(2)composite cement composites thermoelectric effect Seebeck coefficient electrical conductivity
下载PDF
Tuning energy output of PTFE/Al composite materials through gradient structure 被引量:1
20
作者 Yao-feng Mao Qian-qian He +3 位作者 Jian Wang Chuan-hao Xu Jun Wang Fu-de Nie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期134-142,共9页
As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In thi... As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al. 展开更多
关键词 PTFE/Al composite Gradient structure Radial gradient Pressure output
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部