The expansion and micro-cracks of the mortar with composite mineral admixtures (fly ash, zeolite and slag) due to the alkali-silica reaction (ASR) are studied. Results show that composite mineral admixtures cannot...The expansion and micro-cracks of the mortar with composite mineral admixtures (fly ash, zeolite and slag) due to the alkali-silica reaction (ASR) are studied. Results show that composite mineral admixtures cannot absolutely diminish the ASR of mortar bars with the low-alkali cement and a highly reactive aggregate. But the expansion rate and the deleterious expansion of the mortar bar are mostly reduced with increasing composite mineral admixture. The influence of mineral admixtures on the fluidity of the paste and the strength of the mortar is also studied.展开更多
The flotation results of a phosphate ore are improved by replacing the conventional collectors of fatty acids with composite collectors. The synergistic effect on the froth characteristics in systems using composite c...The flotation results of a phosphate ore are improved by replacing the conventional collectors of fatty acids with composite collectors. The synergistic effect on the froth characteristics in systems using composite collectors has then been studied, and the concept of 'mixed hemimicellae' has been proposed in the adsorption of composite collectors at the air/solution interfaces.展开更多
Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure...Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure and mineral composition associated with diagenetic variation on the mechanical behavior of reef limestone,a series of quasi-static and dynamic compression tests along with microscopic examinations were performed on the reef limestone at shallow and deep burial depths.It is revealed that the shallow reef limestone(SRL)is classified as a porous aragonite-type carbonate rock with high porosity(55.3±3.2)%and pore connectivity.In comparison,the deep reef limestone(DRL)is mainly composed of dense calcite-type calcium carbonate with low porosity(4.9±1.6)%and pore connectivity.The DRL strengthened and stiffened by the tight grain framework consistently displays much higher values of the dynamic compressive strength,elastic modulus,brittleness index,and specific energy absorption than those of the SRL.The gap between two types of limestone further increases with an increase in strain rate.It appears that the failure pattern of SRL is dominated by the inherent defects like weak bonding interfaces and growth lines,revealed by the intricate fracturing network and mixed failure.Likewise,although the preexisting megapores in DRL may affect the crack propagation on pore tips to a certain distance,it hardly alters the axial splitting failure of DRL under impacts.The stress wave propagation and attenuation in SRL is primarily controlled by the reflection and diffusion caused by plenty mesopores,as well as an energy dissipation in layer-wise pore collapse and adjacent grain crushing,while the stress wave in DRL is highly hinged on the insulation and diffraction induced by the isolated megapores.This process is accompanied by the energy dissipation behavior of inelastic deformation resulted from the pore-emanated microcracking.展开更多
This work aimed, on the one hand, to determine the mineral and phytochemical composition of Carica papaya in order to guarantee the food safety of consumers and on the other hand, to evaluate the acute toxicity of pap...This work aimed, on the one hand, to determine the mineral and phytochemical composition of Carica papaya in order to guarantee the food safety of consumers and on the other hand, to evaluate the acute toxicity of papaya seeds. The papayas were bought at the Mzée market in Lubumbashi and Selembao in Kinshasa. Fruit sampling was done according to the ISO 7002 standard on agricultural and food products;the papayas were firm, mature, and without stains or physical damage. The analysis results of the papaya pulp showed both for the samples from the city of Lubumbashi and for the city province of Kinshasa that it contains respectively 85.87% and 84.46% water, 0.59% and 0.53% ash content. The mineral evaluation of our two samples presented a potassium content of 200 ± 8 mg, magnesium 13.12 ± 3 mg, calcium 22.15 ± 2 mg, sodium 3 mg ± 0.5 for the sample from Lubumbashi and 192.32 ± 8 mg of potassium, 14.458 ± 3 mg of magnesium, 20.58 ± 2 mg of calcium and 3.58 ± 0.5 mg of sodium for the sample from Kinshasa in macroelements. Concerning the trace elements, after analysis, we found zinc content (0.29 ± 0.1 mg and 0.12 ± 0.1 mg), copper (0.02 ± 0.01 mg and 0.14 ± 0.01 mg), and iron (2.22 ± 0.5 mg and 2.04 ± 0.5 mg) respectively for Lubumbashi and Kinshasa. The chemical screening indicates the presence of alkaloids, saponosides, tannins catechics, flavonoids and anthocyanins in the palm wine and ethanolic extract of the seeds of Carica papaya and an absence of cyanogenic glycosides and gallic tannins. With mild toxicity, the seeds of the fruit of Carica papaya L. can be used with moderate risk by the population.展开更多
Because of the various elements that come into play in natural soil formation, the impact of varied proportions of mineral composition and fines amount on Atterberg limits and compaction characteristics of soils is no...Because of the various elements that come into play in natural soil formation, the impact of varied proportions of mineral composition and fines amount on Atterberg limits and compaction characteristics of soils is not well known. Three distinct soil samples were used in this investigation. The findings indicated the effect of varied mineral composition proportions and fines amount on the liquid limit, plastic limit, and plasticity index as assessed by the Casagrande test and hand-rolling method. The fluctuation of maximum dry density and optimal moisture content with these three soils has also been studied. Furthermore, correlations were established to indicate the compaction parameters and the amount of minerals and particles in the soil. The data show that the mineral content of the soil has a direct impact on the Atterberg limits and compaction characteristics. Soils containing larger percentages of expansive minerals, such as montmorillonite, have more flexibility and volume change capability. Mineral composition influences compaction parameters such as maximum dry density, ideal water content, axial strain, and axial stress. Soils with a larger proportion of fines, such as Soil 2 and Soil 3, have stronger flexibility and lower compaction qualities, with higher ideal water content and lower maximum dry density. Soil 1 has moderate flexibility and intermediate compaction qualities due to its low fines percentage. The effect of different mineral compositions and fines on the Atterberg limits and compaction characteristics of soils can be used to predict the behavior of compacted soils encountered in engineering practices, reducing the time and effort required to assess soil suitability for engineering use.展开更多
Increasing K+ adsorption can be an effective alternative in building an available K pool in soils to optimize crop recovery and minimize losses into the environment. We hypothesized that long-term fertilization might...Increasing K+ adsorption can be an effective alternative in building an available K pool in soils to optimize crop recovery and minimize losses into the environment. We hypothesized that long-term fertilization might change K+ adsorption because of changes in the chemical and mineralogical properties of a rice (Oryza sativa L.). The aims of this study were (i) to determine clay minerals in paddy soil clay size fractions using X-ray diffraction methods and a numerical diagramdecomposition method; (ii) to measure K+ adsorption isotherms before and after H202 oxidation of organic matter, and (iii) to investigate whether K+ adsorption is correlated with changes in soil chemical and mineral properties. The 30-yr longterm fertilization treatments caused little change in soil organic C (SOC) but a large variation in soil mineral composition. The whole-clay fraction (〈5 Jam) corresponded more to the fertilization treatment than the fine-clay fraction (〈1 gin) in terms of percentage of illite peak area. The total percentage of vermiculite-chlorite peak area was significantly negatively correlated with the total percentage ofillite peak area in the 〈5 lam soil particles (R=-0.946, P〈0.0006). Different fertilization treatments gave significantly different results in K+ adsorption. The SOC oxidation test showed positive effects of SOC on K+ adsorption at lower K+ concentration (≤120 mg L-0 and negative effects at higher K+ concentration (240 mg L-l). The K+ adsorption by soil clay minerals after SOC oxidization accounted for 60-158% of that by unoxidized soils, suggesting a more important role of soil minerals than SOC on K+ adsorption. The K+ adsorption potential was significantly correlated to the amount of poorly crystallized illite present (R--0.879, P=0.012). The availability of adsorbed K+ for plant growth needs further study.展开更多
Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollu...Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chiuensis, Sophora japonica Ailanthus altissima, Syringa oblata and Prunus persica, had larger densities of particles among the tall species. Due to resuspension of road dust, the densities of particles of Euonymus japonicns and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM30 (particulate matter less than 10 μm in aerodynamic diameter; 98.4%) and PM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si, Al, Mg, Na, Fe, S, Cl and minerals with higher content were SiO2, CaCO3, CaMg(CO3)2, NaCI and 2CASO4. H2O, SiO2. CaCO3 and CaMg(CO3)2 mainly came from resuspension of road dust. 2CaSO4. H2O was produced by the reaction between CaCO3 derived from earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.展开更多
The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms...The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms of mineral assemblages.UnitsⅠandⅡare mainly composed of wehrlite and clino-pyroxenite, whereas UnitⅢis mainly composed of gabbro.PGE sulfide-rich layers mainly occur in Unit I, whereas thick Fe-Ti oxide-rich layers mainly occur in UnitⅢ.An ilmenite-rich layer occurs at the top of UnitⅠ.Fe-Ti oxides include magnetite and ilmenite.Small amounts of cumulus and intercumulus magnetite occur in UnitsⅠandⅡ.Cumulus magnetite grains are commonly euhedral and enclosed within olivine and clinopyroxene.They have high Cr2O3 contents ranging from 6.02 to 22.5 wt.%,indicating that they are likely an early crystallized phase from magmas.Intercumulus magnetite that usually displays ilmenite exsolution occupies the interstices between cumulus olivine crystals and coexists with interstitial clinopyroxene and plagioclase.Intercumulus magnetite has Cr2O3 ranging from 1.65 to 6.18 wt.%, lower than cumulus magnetite.The intercumulus magnetite may have crystallized from the trapped liquid.Large amounts of magnetite in UnitⅢcontains Cr2O3(<0.28 wt.%) much lower than magnetite in UnitsⅠandⅡ.The magnetite in UnitⅢis proposed to be accumulated from a Fe-Ti-rich melt.The Fe-Ti-rich melt is estimated to contain 35.9 wt.%of SiO2,26.9 wt.%of FeOt,8.2 wt.%of TiO2,13.2 wt.%of CaO, 8.3 wt.%of MgO,5.5 wt.%of Al2O3 and 1.0 wt.%of P2O5.The composition is comparable with the Fe-rich melts in the Skaergaard and Sept Iles intrusions.Paired non-reactive microstructures,granophyre pockets and ilmenite-rich intergrowths,are representative of Si-rich melt and Fe-Ti-rich melt,and are the direct evidence for the existence of an immiscible Fe-Ti-rich melt that formed from an evolved ferro-basaltic magma.展开更多
This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic m...This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38 kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1%, were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc(ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.展开更多
The Lower Cretaceous Xiagou Formation contains the major source rocks for the crude oils discovered in the Qingxi Sag and the South Uplift in the Jiuquan Basin, northwestern China. The Xiagou Formation source rock was...The Lower Cretaceous Xiagou Formation contains the major source rocks for the crude oils discovered in the Qingxi Sag and the South Uplift in the Jiuquan Basin, northwestern China. The Xiagou Formation source rock was formed in a closed,anoxic, reducing, alkaline lacustrine environment with a high salinity. Its high content of brittle minerals is favorable for the fracturing of reservoirs in source rock formations in the Qingxi Sag. The Xiagou Formation contains a great number of fair to excellent source rocks, and their organic matter(OM) came chiefly from plankton/algae and high plants as well as possibly bacterial organisms. The Xiagou Formation source rocks mainly contain Type II OM and some Type III and Type I OM, with good oil-generating potential. The source rock maturity is mainly in the early-mature and mature stages, and its Rovalue corresponding to oil peak is about 0.8%, which is lower than classic oil peak Rovalue of 1.0%; therefore, a great deal of hydrocarbon was generated before the classic oil peak Ro= 1.0%. Mature source rock in the Xiagou Formation tends to be distributed in the older members and at a greater depth. There is a better exploration potential of tight oil in the deep Qingxi Sag.展开更多
Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oi...Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oil and gas in fine-grained rocks.However,due to the resolution limit of conventional logs,it is challenging to recognize the features of centimeter-scale laminae.To close this gap,complementary studies,including core observation,thin section,X-ray diffraction(XRD),conventional log analysis,and slabs of image logs,were conducted to unravel the centimeter-scale laminae.The laminae recognition models were built using well logs.The fine-grained rocks can be divided into laminated rocks(lamina thickness of<0.01 m),layered rocks(0.01-0.1 m),and massive rocks(no layer or layer spacing of>0.1 m)according to the laminae scale from core observations.According to the mineral superposition assemblages from thin-section observations,the laminated rocks can be further divided into binary,ternary,and multiple structures.The typical mineral components,slabs,and T2spectrum distributions of various lamina types are unraveled.The core can identify the centimeter-millimeter-scale laminae,and the thin section can identify the millimeter-micrometer-scale laminae.Furthermore,they can detect mineral types and their superposition sequence.Conventional logs can identify the meter-scale layers,whereas image logs and related slabs can identify the laminae variations at millimeter-centimeter scales.Therefore,the slab of image logs combined with thin sections can identify laminae assemblage characteristics,including the thickness and vertical assemblage.The identification and classification of lamina structure of various scales on a single well can be predicted using conventional logs,image logs,and slabs combined with thin sections.The layered rocks have better reservoir quality and oil-bearing potential than the massive and laminated rocks.The laminated rocks’binary lamina is better than the ternary and multiple layers due to the high content of felsic minerals.The abovementioned results build the prediction model for multiscale laminae structure using well logs,helping sweet spots prediction in the Permian Lucaogou Formation in the Jimusar Sag and fine-grained sedimentary rocks worldwide.展开更多
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(...This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.展开更多
The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Iminer...The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Imineral electron microprobe analysis,zircon U-Pb dating and Hf isotope analysis were carried out for the Jinjiling and Pangxiemu plutons.The zircon U-Pb dating yields weighted mean ages of 152.9±0.9 Ma for the Jinjiling pluton and 151.7±1.5 Ma for the Pangxiemu pluton,with a narrow gap between them.The Jinjiling and Pangxiemu plutons both have geochemical characteristics of high SiO2,Al2 O3,Na2 O,K2 O and low TiO2,MgO,CaO,P2 O5 contents,with intense depletions in Sr,Ba,Ti,Eu and enrichments in Ga,FeoOT and HFSE,and these characteristics reflect an A-type affinity.From the Jinjiling to the Pangxiemu plutons,the mineral composition of mica changes from lepidomelane to zinnwaldite,with increases in F,Li2 O and Rb2 O contents.The mineral composition of zircon changes from low Zr/Hf to high Zr/Hf,with increasing HfO2,P2 O5 and UO2+ThO2+Y2 O3 contents.The mineral compositions of feldspar indicate that the Pangxiemu pluton contains more alkali feldspar than the Jinjiling pluton.The whole-rock geochemistry and mineral compositions reveal a higher degree of differentiation for the Pangxiemu pluton.The nearly uniformεHf(t)indicates the same source region for the two plutons:both were derived from partial melting of the lower crust,with small contributions of mantle materials.In addition,higher F,lower Nb/Ta and Zr/Hf ratios in the Pangxiemu Pluton suggest a closer relationship with the rare metal mineralization than for the Jinjiling pluton.展开更多
Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level o...Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level of soil on the Moon, studying the compositions and distribution of elements and minerals on the lunar surface can help to understand the evolution of the Moon through remote sensing technology. The correlation between the spectral characteristics of Chang'e-1 interference imaging spectrometry(IIM) reflectance images and the mineral contents of LSCC(Lunar Soil Characterization Consortium) lunar surface mineral samples was discussed and the spatial distributions of Fe O and Al_2O_3 contained in both pyroxene and plagioclase on LQ-4 were studied using the improved angle parameter method, MNF, and band ratio statistics. A comparison of the mapping results of the optical models by Lucey, Shkuractov and other researchers on Clementine and the gamma ray spectrometry data shows that the content error is within 0.6% for lunar mare areas and close to 1% for the highland areas. The tectonic framework on the lunar surface was also investigated. And based on integrated analysis of previous findings on topography of the lunar surface, Chang'e LAM, CCD and LOLA images and the gravity anomalies data(Clementine GLGM-2), the tectonic unit subdivision was established for LQ-4, the idea of subdividing the lunar tectonic units was proposed, and this will provide a good foundation for studying the lunar tectonic evolution.展开更多
To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of var...To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of various age for different grinding time were studied. The relationships of the activity and the composition of fly ash, microstructure and the distribution of particle size by mechanical activation of fly ash were obtained. The internal glass beads with activity were released by grinding fly ash for a certain time. The particle specific surface area was improved and the hydration reaction of the interface and the surface active center was increased by grinding. The granularity distributing of fly-ash trended towards optimization. The polar molecules or ions were easier to intrude into the internal cavity of the vitreous body. The active silica and alumina of fly ash were rapidly depolymerized. Each performance index of fly ash was increased before grinding for 20 min. Cement paste intensity of various age increased along with the grinding time, and the early strength increase range was big, but the later period intensity increase range hastened slightly. The internal part of vitreous of fly ash was destroyed if the fly ash continued to be ground and the activity of fly ash was reduced. It is suggested that Guozhuang's fly ash should be ground for 20 min.展开更多
A research project wus conducted to manufacture eco-cement for sustainable development using cement kiln dust( CKD ) and granular blast furnace slag( GBFS ). In the project, the burning process and minerul composi...A research project wus conducted to manufacture eco-cement for sustainable development using cement kiln dust( CKD ) and granular blast furnace slag( GBFS ). In the project, the burning process and minerul compositions of CKD dinker were investigated. Different minerulizers such as CaSO4 and CaF2 , sulfur and alkali corttent were coasidered. The strength of CKD and GBFS eco-cement were evaluated. The results indicate the CKD clinker can not only form ordinary cement clinker minerals such as C3 S, C2 S and C4 AF , but also form such high-reuctive minerals as C4 A3 S and C. A7 · CaF2 . The CKD and GBFS eco-cement will have the similar strength to the Portland cement grade 32.5 when blend proportion is properly applied.展开更多
The meso-structure mineral composition and fracture mechanism of uniaxial compressed mudstone samples at high temperature were analyzed by XRD and scanning electron microscopy. The effect of tem- perature on mudstone ...The meso-structure mineral composition and fracture mechanism of uniaxial compressed mudstone samples at high temperature were analyzed by XRD and scanning electron microscopy. The effect of tem- perature on mudstone composition and fracture mechanism were studied from a meso-structural per- spective, and the relationship between meso-structure and macro-mechanical characteristics at high temperature was revealed. The findings demonstrated that the fluctuation in diffraction intensity of kao- linite in the mudstone caused the fluctuation in its mechanical properties. The overall structure under- went a phase change around 600℃, which led to the sudden change in the mechanical properties of mudstone samples. When the temperature reached 600 ℃, the crystalline state worsened and kaolinite disappeared; however, some illite was produced, indicating that the chemical reaction of the structure and sudden drop of bearing capacity of the mudstone. Mudst0ne fracturing at high temperature involves mainly intergranular and transgranular fractures, which are typical in micro-brittle tensile failure. Con- sidering the macro-fracture characteristics of mudstone, the results suggested that macro-fracture under external force corresoonds to the meso-fracture.展开更多
Based on reviews and summaries of the naming schemes of fine-grained sedimentary rocks, and analysis of characteristics of fine-grained sedimentary rocks, the problems existing in the classification and naming of fine...Based on reviews and summaries of the naming schemes of fine-grained sedimentary rocks, and analysis of characteristics of fine-grained sedimentary rocks, the problems existing in the classification and naming of fine-grained sedimentary rocks are discussed. On this basis, following the principle of three-level nomenclature, a new scheme of rock classification and naming for fine-grained sedimentary rocks is determined from two perspectives: First, fine-grained sedimentary rocks are divided into 12 types in two major categories, mudstone and siltstone, according to particle size(sand, silt and mud). Second,fine-grained sedimentary rocks are divided into 18 types in four categories, carbonate rock, fine-grained felsic sedimentary rock,clay rock and mixed fine-grained sedimentary rock according to mineral composition(carbonate minerals, felsic detrital minerals and clay minerals as three end elements). Considering the importance of organic matter in unconventional oil and gas generation and evaluation, organic matter is taken as the fourth element in the scheme. Taking the organic matter contents of 0.5% and 2% as dividing points, fine grained sedimentary rocks are divided into three categories, organic-poor, organic-bearing,and organic-rich ones. The new scheme meets the requirement of unconventional oil and gas exploration and development today and solves the problem of conceptual confusion in fine-grained sedimentary rocks, providing a unified basic term system for the research of fine-grained sedimentology.展开更多
Microearthquakes accompanying shale gas recovery highlight the importance of exploring the frictional and stability properties of shale gouges.Aiming to reveal the influencing factors on fault stability,this paper exp...Microearthquakes accompanying shale gas recovery highlight the importance of exploring the frictional and stability properties of shale gouges.Aiming to reveal the influencing factors on fault stability,this paper explores the impact of mineral compositions,effective stress and temperature on the frictional stability of Longmaxi shale gouges in deep reservoirs located in the Luzhou area,southeastern Sichuan Basin.Eleven shear experiments were conducted to define the frictional strength and stability of five shale gouges.The specific experimental conditions were as follows:temperatures:90–270°C;a confining stress:95 MPa;and pore fluid pressures:25–55 MPa.The results show that all five shale gouges generally display high frictional strength with friction coefficients ranging from 0.60 to 0.70 at the aforementioned experiment condition of pressures,and temperatures.Frictional stability is significantly affected by temperature and mineral compositions,but is insensitive to variation in pore fluid pressures.Fault instability is enhanced at higher temperatures(especially at>200°C)and with higher tectosilicate/carbonate contents.The results demonstrate that the combined effect of mineral composition and temperature is particularly important for induced seismicity during hydraulic fracturing in deep shale reservoirs.展开更多
Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and ...Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and 159 samples were analyzed to determine detrital minerals. Authigenic minerals, including siderite, pyrite, and glauconite, are abundant whereas secondary minerals, such as chlorite and limonite, are distributed widely in the study area. Siderite has a maximum content of 19.98 g/kg and appears in three types from nearshore to continental shelf, showing the process of forming-maturity-oxidation. In this process, the Mn O content in siderite decreases, but FeOand Mg O content increase. Colorless or transparent siderite pellets are fresh grains generated within a short time and widely distributed throughout the region; high content appears in coastal area where river inputs are discharged. Translucent cemented double pellets appearing light yellow to red are mature grains; high content is observed in the central shelf. Red-brown opaque granular pellets are oxidized grains,which are concentrated in the eastern gulf. Pyrite is mostly distributed in the central continental shelf with an approximately north–south strip. Pyrite are mainly observed in foraminifera shell and distributed in clayey silt sediments, which is similar to that in the Yangtze River mouth and the Yellow Sea. The pyrite in the gulf is deduced from genetic types associated with sulfate reduction and organic matter decomposition. Majority of glauconite are granular with few laminar. Glauconite is concentrated in the northern and southern parts within the boundary of 9.5° to 10.5°N and is affected by river input diffusion. The distribution of glauconite is closely correlated with that of chlorite and plagioclase, indicating that glauconite is possibly derived from altered products of chlorite and plagioclase. The KO content of glauconite is low or absent, indicating its short formation time.展开更多
文摘The expansion and micro-cracks of the mortar with composite mineral admixtures (fly ash, zeolite and slag) due to the alkali-silica reaction (ASR) are studied. Results show that composite mineral admixtures cannot absolutely diminish the ASR of mortar bars with the low-alkali cement and a highly reactive aggregate. But the expansion rate and the deleterious expansion of the mortar bar are mostly reduced with increasing composite mineral admixture. The influence of mineral admixtures on the fluidity of the paste and the strength of the mortar is also studied.
文摘The flotation results of a phosphate ore are improved by replacing the conventional collectors of fatty acids with composite collectors. The synergistic effect on the froth characteristics in systems using composite collectors has then been studied, and the concept of 'mixed hemimicellae' has been proposed in the adsorption of composite collectors at the air/solution interfaces.
基金supported by the National Natural Science Foundation for Excellent Young Scholars of China(No.52222110)the Natural Science Foundation of Jiangsu Province(No.BK20211230).
文摘Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure and mineral composition associated with diagenetic variation on the mechanical behavior of reef limestone,a series of quasi-static and dynamic compression tests along with microscopic examinations were performed on the reef limestone at shallow and deep burial depths.It is revealed that the shallow reef limestone(SRL)is classified as a porous aragonite-type carbonate rock with high porosity(55.3±3.2)%and pore connectivity.In comparison,the deep reef limestone(DRL)is mainly composed of dense calcite-type calcium carbonate with low porosity(4.9±1.6)%and pore connectivity.The DRL strengthened and stiffened by the tight grain framework consistently displays much higher values of the dynamic compressive strength,elastic modulus,brittleness index,and specific energy absorption than those of the SRL.The gap between two types of limestone further increases with an increase in strain rate.It appears that the failure pattern of SRL is dominated by the inherent defects like weak bonding interfaces and growth lines,revealed by the intricate fracturing network and mixed failure.Likewise,although the preexisting megapores in DRL may affect the crack propagation on pore tips to a certain distance,it hardly alters the axial splitting failure of DRL under impacts.The stress wave propagation and attenuation in SRL is primarily controlled by the reflection and diffusion caused by plenty mesopores,as well as an energy dissipation in layer-wise pore collapse and adjacent grain crushing,while the stress wave in DRL is highly hinged on the insulation and diffraction induced by the isolated megapores.This process is accompanied by the energy dissipation behavior of inelastic deformation resulted from the pore-emanated microcracking.
文摘This work aimed, on the one hand, to determine the mineral and phytochemical composition of Carica papaya in order to guarantee the food safety of consumers and on the other hand, to evaluate the acute toxicity of papaya seeds. The papayas were bought at the Mzée market in Lubumbashi and Selembao in Kinshasa. Fruit sampling was done according to the ISO 7002 standard on agricultural and food products;the papayas were firm, mature, and without stains or physical damage. The analysis results of the papaya pulp showed both for the samples from the city of Lubumbashi and for the city province of Kinshasa that it contains respectively 85.87% and 84.46% water, 0.59% and 0.53% ash content. The mineral evaluation of our two samples presented a potassium content of 200 ± 8 mg, magnesium 13.12 ± 3 mg, calcium 22.15 ± 2 mg, sodium 3 mg ± 0.5 for the sample from Lubumbashi and 192.32 ± 8 mg of potassium, 14.458 ± 3 mg of magnesium, 20.58 ± 2 mg of calcium and 3.58 ± 0.5 mg of sodium for the sample from Kinshasa in macroelements. Concerning the trace elements, after analysis, we found zinc content (0.29 ± 0.1 mg and 0.12 ± 0.1 mg), copper (0.02 ± 0.01 mg and 0.14 ± 0.01 mg), and iron (2.22 ± 0.5 mg and 2.04 ± 0.5 mg) respectively for Lubumbashi and Kinshasa. The chemical screening indicates the presence of alkaloids, saponosides, tannins catechics, flavonoids and anthocyanins in the palm wine and ethanolic extract of the seeds of Carica papaya and an absence of cyanogenic glycosides and gallic tannins. With mild toxicity, the seeds of the fruit of Carica papaya L. can be used with moderate risk by the population.
文摘Because of the various elements that come into play in natural soil formation, the impact of varied proportions of mineral composition and fines amount on Atterberg limits and compaction characteristics of soils is not well known. Three distinct soil samples were used in this investigation. The findings indicated the effect of varied mineral composition proportions and fines amount on the liquid limit, plastic limit, and plasticity index as assessed by the Casagrande test and hand-rolling method. The fluctuation of maximum dry density and optimal moisture content with these three soils has also been studied. Furthermore, correlations were established to indicate the compaction parameters and the amount of minerals and particles in the soil. The data show that the mineral content of the soil has a direct impact on the Atterberg limits and compaction characteristics. Soils containing larger percentages of expansive minerals, such as montmorillonite, have more flexibility and volume change capability. Mineral composition influences compaction parameters such as maximum dry density, ideal water content, axial strain, and axial stress. Soils with a larger proportion of fines, such as Soil 2 and Soil 3, have stronger flexibility and lower compaction qualities, with higher ideal water content and lower maximum dry density. Soil 1 has moderate flexibility and intermediate compaction qualities due to its low fines percentage. The effect of different mineral compositions and fines on the Atterberg limits and compaction characteristics of soils can be used to predict the behavior of compacted soils encountered in engineering practices, reducing the time and effort required to assess soil suitability for engineering use.
基金funded by the the Public Service Sectors (Agriculture) Research Special Funds, China(201203013-06)supported in partial by the International Plant Nutrition Institute (IPNI ChinaProgram: Hunan-16)the Key Technologies R&D Program of China during the 12th Five-Year-Plan period(2012BAD05B05-3)
文摘Increasing K+ adsorption can be an effective alternative in building an available K pool in soils to optimize crop recovery and minimize losses into the environment. We hypothesized that long-term fertilization might change K+ adsorption because of changes in the chemical and mineralogical properties of a rice (Oryza sativa L.). The aims of this study were (i) to determine clay minerals in paddy soil clay size fractions using X-ray diffraction methods and a numerical diagramdecomposition method; (ii) to measure K+ adsorption isotherms before and after H202 oxidation of organic matter, and (iii) to investigate whether K+ adsorption is correlated with changes in soil chemical and mineral properties. The 30-yr longterm fertilization treatments caused little change in soil organic C (SOC) but a large variation in soil mineral composition. The whole-clay fraction (〈5 Jam) corresponded more to the fertilization treatment than the fine-clay fraction (〈1 gin) in terms of percentage of illite peak area. The total percentage of vermiculite-chlorite peak area was significantly negatively correlated with the total percentage ofillite peak area in the 〈5 lam soil particles (R=-0.946, P〈0.0006). Different fertilization treatments gave significantly different results in K+ adsorption. The SOC oxidation test showed positive effects of SOC on K+ adsorption at lower K+ concentration (≤120 mg L-0 and negative effects at higher K+ concentration (240 mg L-l). The K+ adsorption by soil clay minerals after SOC oxidization accounted for 60-158% of that by unoxidized soils, suggesting a more important role of soil minerals than SOC on K+ adsorption. The K+ adsorption potential was significantly correlated to the amount of poorly crystallized illite present (R--0.879, P=0.012). The availability of adsorbed K+ for plant growth needs further study.
基金The National Natural Science Foundation of China (No. 30570338) the Natural Science Foundation of Beijing (No. 6053026) andthe Ministry of Education, China(No. 20040027020).
文摘Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chiuensis, Sophora japonica Ailanthus altissima, Syringa oblata and Prunus persica, had larger densities of particles among the tall species. Due to resuspension of road dust, the densities of particles of Euonymus japonicns and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM30 (particulate matter less than 10 μm in aerodynamic diameter; 98.4%) and PM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si, Al, Mg, Na, Fe, S, Cl and minerals with higher content were SiO2, CaCO3, CaMg(CO3)2, NaCI and 2CASO4. H2O, SiO2. CaCO3 and CaMg(CO3)2 mainly came from resuspension of road dust. 2CaSO4. H2O was produced by the reaction between CaCO3 derived from earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.
基金supported by a National Program on Key Basic Research Project(973 Program,Grant No.2011CB808903)National Natural Science Foundation of China(Grant Nos.41073030 and 41121002)a 'CAS Hundred Talents' project under Chinese Academy of Sciences to CYW and a GIGCAS 135 project Y234041001
文摘The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms of mineral assemblages.UnitsⅠandⅡare mainly composed of wehrlite and clino-pyroxenite, whereas UnitⅢis mainly composed of gabbro.PGE sulfide-rich layers mainly occur in Unit I, whereas thick Fe-Ti oxide-rich layers mainly occur in UnitⅢ.An ilmenite-rich layer occurs at the top of UnitⅠ.Fe-Ti oxides include magnetite and ilmenite.Small amounts of cumulus and intercumulus magnetite occur in UnitsⅠandⅡ.Cumulus magnetite grains are commonly euhedral and enclosed within olivine and clinopyroxene.They have high Cr2O3 contents ranging from 6.02 to 22.5 wt.%,indicating that they are likely an early crystallized phase from magmas.Intercumulus magnetite that usually displays ilmenite exsolution occupies the interstices between cumulus olivine crystals and coexists with interstitial clinopyroxene and plagioclase.Intercumulus magnetite has Cr2O3 ranging from 1.65 to 6.18 wt.%, lower than cumulus magnetite.The intercumulus magnetite may have crystallized from the trapped liquid.Large amounts of magnetite in UnitⅢcontains Cr2O3(&lt;0.28 wt.%) much lower than magnetite in UnitsⅠandⅡ.The magnetite in UnitⅢis proposed to be accumulated from a Fe-Ti-rich melt.The Fe-Ti-rich melt is estimated to contain 35.9 wt.%of SiO2,26.9 wt.%of FeOt,8.2 wt.%of TiO2,13.2 wt.%of CaO, 8.3 wt.%of MgO,5.5 wt.%of Al2O3 and 1.0 wt.%of P2O5.The composition is comparable with the Fe-rich melts in the Skaergaard and Sept Iles intrusions.Paired non-reactive microstructures,granophyre pockets and ilmenite-rich intergrowths,are representative of Si-rich melt and Fe-Ti-rich melt,and are the direct evidence for the existence of an immiscible Fe-Ti-rich melt that formed from an evolved ferro-basaltic magma.
基金The National Natural Science Foundation of China(No.40275040) and the Shanghai Leading Academic Disciplines(No. T0105)
文摘This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38 kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1%, were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc(ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.
基金supported by the Fourth Petroleum Resource Evaluation Project of China (Grant No. 2013E050209)the National S&T Major Project of China (Grant No. 2012E330)
文摘The Lower Cretaceous Xiagou Formation contains the major source rocks for the crude oils discovered in the Qingxi Sag and the South Uplift in the Jiuquan Basin, northwestern China. The Xiagou Formation source rock was formed in a closed,anoxic, reducing, alkaline lacustrine environment with a high salinity. Its high content of brittle minerals is favorable for the fracturing of reservoirs in source rock formations in the Qingxi Sag. The Xiagou Formation contains a great number of fair to excellent source rocks, and their organic matter(OM) came chiefly from plankton/algae and high plants as well as possibly bacterial organisms. The Xiagou Formation source rocks mainly contain Type II OM and some Type III and Type I OM, with good oil-generating potential. The source rock maturity is mainly in the early-mature and mature stages, and its Rovalue corresponding to oil peak is about 0.8%, which is lower than classic oil peak Rovalue of 1.0%; therefore, a great deal of hydrocarbon was generated before the classic oil peak Ro= 1.0%. Mature source rock in the Xiagou Formation tends to be distributed in the older members and at a greater depth. There is a better exploration potential of tight oil in the deep Qingxi Sag.
基金National Natural Science Foundation of China(Grant No.42002133,42072150)Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-06)for the financial supports and permissions to publish this paper
文摘Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oil and gas in fine-grained rocks.However,due to the resolution limit of conventional logs,it is challenging to recognize the features of centimeter-scale laminae.To close this gap,complementary studies,including core observation,thin section,X-ray diffraction(XRD),conventional log analysis,and slabs of image logs,were conducted to unravel the centimeter-scale laminae.The laminae recognition models were built using well logs.The fine-grained rocks can be divided into laminated rocks(lamina thickness of<0.01 m),layered rocks(0.01-0.1 m),and massive rocks(no layer or layer spacing of>0.1 m)according to the laminae scale from core observations.According to the mineral superposition assemblages from thin-section observations,the laminated rocks can be further divided into binary,ternary,and multiple structures.The typical mineral components,slabs,and T2spectrum distributions of various lamina types are unraveled.The core can identify the centimeter-millimeter-scale laminae,and the thin section can identify the millimeter-micrometer-scale laminae.Furthermore,they can detect mineral types and their superposition sequence.Conventional logs can identify the meter-scale layers,whereas image logs and related slabs can identify the laminae variations at millimeter-centimeter scales.Therefore,the slab of image logs combined with thin sections can identify laminae assemblage characteristics,including the thickness and vertical assemblage.The identification and classification of lamina structure of various scales on a single well can be predicted using conventional logs,image logs,and slabs combined with thin sections.The layered rocks have better reservoir quality and oil-bearing potential than the massive and laminated rocks.The laminated rocks’binary lamina is better than the ternary and multiple layers due to the high content of felsic minerals.The abovementioned results build the prediction model for multiscale laminae structure using well logs,helping sweet spots prediction in the Permian Lucaogou Formation in the Jimusar Sag and fine-grained sedimentary rocks worldwide.
基金This research was supported by the Department of Mining Engineering at the University of Utah.In addition,the lead author wishes to acknowledge the financial support received from the Talent Introduction Project,part of the Elite Program of Shandong University of Science and Technology(No.0104060540171).
文摘This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.
基金financially supported by the Key R&D Program of China(Grant No.2017YFC0602402)the Innovationdriven Plan of Central South University,China(Grant No.2015CX008)+2 种基金the China Postdoctoral Science Foundation(Grant No.2017M622597)Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education(Grant No.2019YSJS23)the Natural Science Foundation of Hunan Province(Grant No.2017JJ3138)
文摘The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Imineral electron microprobe analysis,zircon U-Pb dating and Hf isotope analysis were carried out for the Jinjiling and Pangxiemu plutons.The zircon U-Pb dating yields weighted mean ages of 152.9±0.9 Ma for the Jinjiling pluton and 151.7±1.5 Ma for the Pangxiemu pluton,with a narrow gap between them.The Jinjiling and Pangxiemu plutons both have geochemical characteristics of high SiO2,Al2 O3,Na2 O,K2 O and low TiO2,MgO,CaO,P2 O5 contents,with intense depletions in Sr,Ba,Ti,Eu and enrichments in Ga,FeoOT and HFSE,and these characteristics reflect an A-type affinity.From the Jinjiling to the Pangxiemu plutons,the mineral composition of mica changes from lepidomelane to zinnwaldite,with increases in F,Li2 O and Rb2 O contents.The mineral composition of zircon changes from low Zr/Hf to high Zr/Hf,with increasing HfO2,P2 O5 and UO2+ThO2+Y2 O3 contents.The mineral compositions of feldspar indicate that the Pangxiemu pluton contains more alkali feldspar than the Jinjiling pluton.The whole-rock geochemistry and mineral compositions reveal a higher degree of differentiation for the Pangxiemu pluton.The nearly uniformεHf(t)indicates the same source region for the two plutons:both were derived from partial melting of the lower crust,with small contributions of mantle materials.In addition,higher F,lower Nb/Ta and Zr/Hf ratios in the Pangxiemu Pluton suggest a closer relationship with the rare metal mineralization than for the Jinjiling pluton.
基金jointly supported by a grant from the National Natural Science Foundation of China(No.41490634)the National Key Basic Research Special Foundation of China(No.2015FY210500)
文摘Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level of soil on the Moon, studying the compositions and distribution of elements and minerals on the lunar surface can help to understand the evolution of the Moon through remote sensing technology. The correlation between the spectral characteristics of Chang'e-1 interference imaging spectrometry(IIM) reflectance images and the mineral contents of LSCC(Lunar Soil Characterization Consortium) lunar surface mineral samples was discussed and the spatial distributions of Fe O and Al_2O_3 contained in both pyroxene and plagioclase on LQ-4 were studied using the improved angle parameter method, MNF, and band ratio statistics. A comparison of the mapping results of the optical models by Lucey, Shkuractov and other researchers on Clementine and the gamma ray spectrometry data shows that the content error is within 0.6% for lunar mare areas and close to 1% for the highland areas. The tectonic framework on the lunar surface was also investigated. And based on integrated analysis of previous findings on topography of the lunar surface, Chang'e LAM, CCD and LOLA images and the gravity anomalies data(Clementine GLGM-2), the tectonic unit subdivision was established for LQ-4, the idea of subdividing the lunar tectonic units was proposed, and this will provide a good foundation for studying the lunar tectonic evolution.
基金Funded by the National Natural Science Foundation of China(No.51574055)
文摘To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of various age for different grinding time were studied. The relationships of the activity and the composition of fly ash, microstructure and the distribution of particle size by mechanical activation of fly ash were obtained. The internal glass beads with activity were released by grinding fly ash for a certain time. The particle specific surface area was improved and the hydration reaction of the interface and the surface active center was increased by grinding. The granularity distributing of fly-ash trended towards optimization. The polar molecules or ions were easier to intrude into the internal cavity of the vitreous body. The active silica and alumina of fly ash were rapidly depolymerized. Each performance index of fly ash was increased before grinding for 20 min. Cement paste intensity of various age increased along with the grinding time, and the early strength increase range was big, but the later period intensity increase range hastened slightly. The internal part of vitreous of fly ash was destroyed if the fly ash continued to be ground and the activity of fly ash was reduced. It is suggested that Guozhuang's fly ash should be ground for 20 min.
基金Funded by the National Natural Science Foundation of China(No.50178058)
文摘A research project wus conducted to manufacture eco-cement for sustainable development using cement kiln dust( CKD ) and granular blast furnace slag( GBFS ). In the project, the burning process and minerul compositions of CKD dinker were investigated. Different minerulizers such as CaSO4 and CaF2 , sulfur and alkali corttent were coasidered. The strength of CKD and GBFS eco-cement were evaluated. The results indicate the CKD clinker can not only form ordinary cement clinker minerals such as C3 S, C2 S and C4 AF , but also form such high-reuctive minerals as C4 A3 S and C. A7 · CaF2 . The CKD and GBFS eco-cement will have the similar strength to the Portland cement grade 32.5 when blend proportion is properly applied.
基金financial support from the National Natural Science Foundation of China(Nos.51074166,51104128,51322401 and 51204159)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120095110013)+1 种基金the Science and Technology Projects of Urban and Rural Housing Ministry of Construction of China(No.2011-k3-5)the‘‘Blue Project’’of Jiangsu Province are greatly appreciated
文摘The meso-structure mineral composition and fracture mechanism of uniaxial compressed mudstone samples at high temperature were analyzed by XRD and scanning electron microscopy. The effect of tem- perature on mudstone composition and fracture mechanism were studied from a meso-structural per- spective, and the relationship between meso-structure and macro-mechanical characteristics at high temperature was revealed. The findings demonstrated that the fluctuation in diffraction intensity of kao- linite in the mudstone caused the fluctuation in its mechanical properties. The overall structure under- went a phase change around 600℃, which led to the sudden change in the mechanical properties of mudstone samples. When the temperature reached 600 ℃, the crystalline state worsened and kaolinite disappeared; however, some illite was produced, indicating that the chemical reaction of the structure and sudden drop of bearing capacity of the mudstone. Mudst0ne fracturing at high temperature involves mainly intergranular and transgranular fractures, which are typical in micro-brittle tensile failure. Con- sidering the macro-fracture characteristics of mudstone, the results suggested that macro-fracture under external force corresoonds to the meso-fracture.
基金Supported by the National Natural Science Foundation of China (41872166)。
文摘Based on reviews and summaries of the naming schemes of fine-grained sedimentary rocks, and analysis of characteristics of fine-grained sedimentary rocks, the problems existing in the classification and naming of fine-grained sedimentary rocks are discussed. On this basis, following the principle of three-level nomenclature, a new scheme of rock classification and naming for fine-grained sedimentary rocks is determined from two perspectives: First, fine-grained sedimentary rocks are divided into 12 types in two major categories, mudstone and siltstone, according to particle size(sand, silt and mud). Second,fine-grained sedimentary rocks are divided into 18 types in four categories, carbonate rock, fine-grained felsic sedimentary rock,clay rock and mixed fine-grained sedimentary rock according to mineral composition(carbonate minerals, felsic detrital minerals and clay minerals as three end elements). Considering the importance of organic matter in unconventional oil and gas generation and evaluation, organic matter is taken as the fourth element in the scheme. Taking the organic matter contents of 0.5% and 2% as dividing points, fine grained sedimentary rocks are divided into three categories, organic-poor, organic-bearing,and organic-rich ones. The new scheme meets the requirement of unconventional oil and gas exploration and development today and solves the problem of conceptual confusion in fine-grained sedimentary rocks, providing a unified basic term system for the research of fine-grained sedimentology.
基金Fundamental Research Funds for the Central UniversitiesChina Postdoctoral Science Foundation,Grant/Award Numbers:2021M692448,2022T150483National Natural Science Foundation of China,Grant/Award Numbers:42077247,42107163。
文摘Microearthquakes accompanying shale gas recovery highlight the importance of exploring the frictional and stability properties of shale gouges.Aiming to reveal the influencing factors on fault stability,this paper explores the impact of mineral compositions,effective stress and temperature on the frictional stability of Longmaxi shale gouges in deep reservoirs located in the Luzhou area,southeastern Sichuan Basin.Eleven shear experiments were conducted to define the frictional strength and stability of five shale gouges.The specific experimental conditions were as follows:temperatures:90–270°C;a confining stress:95 MPa;and pore fluid pressures:25–55 MPa.The results show that all five shale gouges generally display high frictional strength with friction coefficients ranging from 0.60 to 0.70 at the aforementioned experiment condition of pressures,and temperatures.Frictional stability is significantly affected by temperature and mineral compositions,but is insensitive to variation in pore fluid pressures.Fault instability is enhanced at higher temperatures(especially at>200°C)and with higher tectosilicate/carbonate contents.The results demonstrate that the combined effect of mineral composition and temperature is particularly important for induced seismicity during hydraulic fracturing in deep shale reservoirs.
基金The National Programme on Global Change and Air-sea Interaction under contract No.GASI-02-SCS-CJ03China Geological Survey:Continental Shelf Drilling Program under contract No.GZH201100202China-Thailand Cooperation Project"Research on Vulnerability of Coastal Zones"
文摘Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and 159 samples were analyzed to determine detrital minerals. Authigenic minerals, including siderite, pyrite, and glauconite, are abundant whereas secondary minerals, such as chlorite and limonite, are distributed widely in the study area. Siderite has a maximum content of 19.98 g/kg and appears in three types from nearshore to continental shelf, showing the process of forming-maturity-oxidation. In this process, the Mn O content in siderite decreases, but FeOand Mg O content increase. Colorless or transparent siderite pellets are fresh grains generated within a short time and widely distributed throughout the region; high content appears in coastal area where river inputs are discharged. Translucent cemented double pellets appearing light yellow to red are mature grains; high content is observed in the central shelf. Red-brown opaque granular pellets are oxidized grains,which are concentrated in the eastern gulf. Pyrite is mostly distributed in the central continental shelf with an approximately north–south strip. Pyrite are mainly observed in foraminifera shell and distributed in clayey silt sediments, which is similar to that in the Yangtze River mouth and the Yellow Sea. The pyrite in the gulf is deduced from genetic types associated with sulfate reduction and organic matter decomposition. Majority of glauconite are granular with few laminar. Glauconite is concentrated in the northern and southern parts within the boundary of 9.5° to 10.5°N and is affected by river input diffusion. The distribution of glauconite is closely correlated with that of chlorite and plagioclase, indicating that glauconite is possibly derived from altered products of chlorite and plagioclase. The KO content of glauconite is low or absent, indicating its short formation time.