期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Preparation, Electrochemical Property and Application in Bulk-modified Electrode of Dawson-type Phospho-molybdate-doped Polypyrrole Composite Nanoparticles
1
作者 WANG Xiu-li ZHAO Hai-yan WANG Yi-fei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第5期556-559,共4页
A kind of inorganic-organic hybrid semiconductor composite nanoparticles: Dawson-type phosphomolybdate- doped polypyrrole (P2Mo18-PPy) was designed and prepared using microemulsion oxidation-polymerization at room ... A kind of inorganic-organic hybrid semiconductor composite nanoparticles: Dawson-type phosphomolybdate- doped polypyrrole (P2Mo18-PPy) was designed and prepared using microemulsion oxidation-polymerization at room temperature and characterized by TEM and IR. The P2Mo18-PPy was used as a bulk-modifier to fabricate a chemically modified carbon paste electrode(CPE) by direct mixing, which represents the example of polyoxometalates( POMs)- doped semiconductor polymer nanoparticles modified electrode. Both the advantage of POMs-doped polymer and the surface-renewal property of the CPE were fully utilized. The electrochemical behavior of the P2Mo18-PPY bulk-modified CPE(P2Mo18-PPy-CPE) was investigated with cyclic voltammetry. Three couples of reversible redox peaks were observed in the range from + 800 to 0 mV, which corresponded to the reduction and oxidation through two-, four- and six-electron processes, respectively. The P2 Mo18-PPY-CPE showed a high electrocatalytic activity for the reduction of nitrite, which expanded the application of POMs-doped semiconductor polymer nanoparticles. 展开更多
关键词 Dawson-type phosphomolybdate POLYPYRROLE composite nanoparticles Bulk-modified Carbon paste electrode Electrocatalysis
下载PDF
PREPARATION OF POLYSTYRENE/SiO_2 COMPOSITE NANOPARTICLES BEARING SULFONIC GROUPS ON THE SURFACE VIA EMULSION COPOLYMERIZATION USING A POLYMERIZABLE EMULSIFIER
2
作者 于建 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第5期629-637,共9页
Functionalized PS/SiO_2 composite nanoparticles bearing sulfonic groups on the surface were successfully synthesized via emulsion copolymerization using a polymerizable emulsifierαolefin solfonate(AOS).As demonstrate... Functionalized PS/SiO_2 composite nanoparticles bearing sulfonic groups on the surface were successfully synthesized via emulsion copolymerization using a polymerizable emulsifierαolefin solfonate(AOS).As demonstrated by transmission electron microscopy and atomic force microscopy,well-defined core-shell PS/SiO_2 composite nanoparticles with a diameter of 50 nm were obtained.Sulfonic groups introduced onto the surface of the composite nanoparticles were quantified by FTIR,and can be controlled to some exten... 展开更多
关键词 PS/SiO_2 composite nanoparticles Polymerizable emulsifier Core-shell structure Sulfonic functionalization.
下载PDF
Synthesis and characterization of Fe_3O_4@SiO_2 magnetic composite nanoparticles by a one-pot process 被引量:3
3
作者 Le Zhang Hui-ping Shao +2 位作者 Hang Zheng Tao Lin Zhi-meng Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第9期1112-1118,共7页
Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nan... Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder(34.85 A·m^2·kg^–1) was markedly lower than that of the Fe3O4 powder(79.55 A·m^2·kg^–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging. 展开更多
关键词 composite materials magnetite nanoparticles iron oxides silicon dioxide one-pot process
下载PDF
Preparation and characterization of cross-linked β-cyclodextrin polymer/Fe_3O_4 composite nanoparticles with core-shell structures 被引量:6
4
作者 Rui Xue Li Shu Mei Liu +2 位作者 Jian Qing Zhao Hideyuki Otsuka Atsushi Takahara 《Chinese Chemical Letters》 SCIE CAS CSCD 2011年第2期217-220,共4页
Cross-linkedβ-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures were prepared via cross linking reaction on the surface of carboxymethylβ-cyclodextrin(CM-β-CD) modified Fe3O4 nanoparti... Cross-linkedβ-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures were prepared via cross linking reaction on the surface of carboxymethylβ-cyclodextrin(CM-β-CD) modified Fe3O4 nanoparticles inβ-cyclodextrin alkaline solution by using epichlorohydrin as crosslinking agent.The morphology,structure and magnetic properties of the prepared composite nanoparticles were investigated by transmission electron microscopy(TEM),Fourier transform infrared(FTIR) spectrometry,X-ray diffraction(XRD) measurement,thermogravimetric analysis(TGA) and Vibrating sample magnetometry (VSM),respectively. 展开更多
关键词 Cross-linkedβ-cyclodextrin polymer Fe3O4 nanoparticles composite nanoparticles Core-shell structures
原文传递
Composite magnetic nanoparticles:Synthesis and cancer-related applications 被引量:1
5
作者 蔡苹 陈洪敏 谢晋 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期27-32,共6页
Recent advances in the preparation and applications of composite magnetic nanoparticles are reviewed and summa- rized, with a focus on cancer-related applications.
关键词 magnetic nanoparticles composite nanoparticles bio-applications surface modification
下载PDF
Microstructure and abrasive wear behaviour of anodizing composite films containing Si C nanoparticles on Ti6Al4V alloy 被引量:6
6
作者 李松梅 郁秀梅 +3 位作者 刘建华 于美 吴量 杨康 《Journal of Central South University》 SCIE EI CAS 2014年第12期4415-4423,共9页
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ... Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed. 展开更多
关键词 Ti6Al4V alloy anodic oxidation Si C nanoparticle composite film
下载PDF
Direct Electrochemistry and Electrocatalysis of Hemoglobin at PAMAM Dendrimer-MWNTs-Au Nanoparticles Composite Film Modified Glassy Carbon Electrode 被引量:1
7
作者 LIU Xing-mei ZHANG Xue-yu +4 位作者 ZHAO Yi-li LIU Wei-lu WANG Bao-jun ZHANG Yi-hua ZHANG Zhi-quan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第5期723-728,共6页
The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0.... The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0.105 V versus SCE, the electron transfer rate constant was 4.66 s-1. E^0' of Hb at the modified electrode was linearly varied in a pH range of 5.0-8.0 with a slope of-49.2 mV/pH. The Hb/PAMAM-MWNTs-AuNPs/GCE gave an excellent electrocatalytic response to the reduction of hydrogen peroxide. The catalytic current increased linearly with H2O2 concentration in a range of 1.0× 10^-6 to 2.2× 10^-3 mol/L. The detection limit was 2.0× 10^-7 mol/L at a signal to noise ratio of 3. The Michaelis-Menten constant(Km^app) was 2.95 mmol/L. 展开更多
关键词 Direct electrochemistry ELECTROCATALYSIS HEMOGLOBIN PAMAM dendrimer-MWNTs-Au nanoparticles composite Glassy carbon electrode
下载PDF
Study on the Properties of MetaIIophthalocyanine-Fe_3O_4 Nanoparticles Composite
8
作者 黄俊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第1期14-18,共5页
The solubility , antioxidation ability, thermal stability, coercivity Hc and long term stability of MPc-Fe3O4-nanoparticles composite(M=Co, Cu, Ni, Mn) have been studied. The results show that MFc-Fe3O4 nanoparticles ... The solubility , antioxidation ability, thermal stability, coercivity Hc and long term stability of MPc-Fe3O4-nanoparticles composite(M=Co, Cu, Ni, Mn) have been studied. The results show that MFc-Fe3O4 nanoparticles composite can be easily dissolved in dilute acid. The dissolving rate of different MPc-Fe3O4 nanoparticles composite is in the following order:M=Mn-M = Co<M=Cu<M=Ni. The antioxidation ability of Fe3O4 nanoparticles are improved greatly after their complex with MPc and there is good relationship between Toxidation of Fe3O4 nanoparticles and n , the complex layers of MPc on the surface of the composite. The results also show that the thermal stability of Fe3O4 nanoparticles increases greatly and the Hc ot them decreases dramatically after Fe3O4 nanoparticles form nanoscale composite with MPc. MPc-Fe3O4 nanoparticles composite have high long term stability. 展开更多
关键词 nanoparticles composite antioxidation ability STABILITY
下载PDF
Graphene-gold Nanoparticle Composite Film Modified Electrode for Determination of Trace Mercury in Environmental Water
9
作者 Xue-mei Wang Shou-guo Wu +2 位作者 Hao Liu Lei Zhou Qi-ping Zhao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第5期590-596,I0004,共8页
The graphene-gold nanoparticles composite film modified glassy carbon electrode (EG- AuNPs/GCE) was prepared by one-step coelectrodeposition and employed for determination of trace mercury in environmental water wit... The graphene-gold nanoparticles composite film modified glassy carbon electrode (EG- AuNPs/GCE) was prepared by one-step coelectrodeposition and employed for determination of trace mercury in environmental water with differential pulse stripping voltammetry. Such a nanostructured composite film combined with the advantages of gold nanoparticles and graphene, can greatly promote the electron-transfer process and increase accumulation abil-ity for Hg(Ⅱ), leading to a remarkably improved sensitivity. The linear calibration curve ranged from 0.2 μg/L to 30 μg/L for Hg(Ⅱ) and the detection limit (S/N=3) was found to be 0.03 μg/L at a deposition time of 300 s. Moreover, the stablity of the as-prepared electrode and interferences from other substances were evaluated. The modified electrode was successfully applied to the direct detection of Hg(Ⅱ) in real water samples. 展开更多
关键词 Graphene-gold nanoparticle composite membrane Chemically modified elec-trode MERCURY Stripping voltammetry
下载PDF
PREPARATION, COMPLEX MECHANISM AND STRUCTURE MODEL OF METALLOPHTHALOCYANINE-Fe_3O_4 NANOPARTICLES COMPOSITE
10
作者 黄俊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2000年第3期19-26,共8页
MPc-Fe3O4-nanoparticles composite(M= Co, Cu , Ni, Mn ) have been prepared and the factors that influence their mean size have been studied. The mean size of the nanoparticles composite increase with the increase of co... MPc-Fe3O4-nanoparticles composite(M= Co, Cu , Ni, Mn ) have been prepared and the factors that influence their mean size have been studied. The mean size of the nanoparticles composite increase with the increase of complex temperature. The interaction of MPc with Fe3O4 nanoparticles has been studied. There are M-O covalent bonding and ionic bonding between MPc and Fe3Q4 nanoparticles. The intensities of M-O bonding and ionic bonding are in vestigated . The complex mechanism of MPc with Fe3O4 nanoparticles have been studied. First, there are complex between MPc and all Fe3O4 nanoparticles. Then, Fe3O4 nanoparticles accumulate together to form the accumulators, MPc have the function of cohering Fe3O4 nanoparticles. A considerable number of MPc combine with Fe3O4 nanoparticles on the surface of the accumu-lators to form MPc-Fe3O4 nanoparticles composite. All the above proesses take place spontaneously. The structuremodel of MPc-Fe3O4 nanoparticles composite has also been investigated. Inside the MPc-Fe3O4 nanoparticles composite, Fe3O4 nanoparticles accumulate together without order, on the surface of the composite, MPc form molecular dispersion layer. The threshold of molecular dispersion layer are also investigated. 展开更多
关键词 nanoparticles composite ACCUMULATOR molecular dispersion layer
下载PDF
Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance
11
作者 A.R.Sadrolhosseini M.Naseri M.K.Halimah 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期111-114,共4页
Fluorene is a polycyclic aromatic hydrocarbon, which is a hazardous toxic chemical in the environment. The measurement of low concentrations of fluorene is a subject of intense interest in chemistry and in the environ... Fluorene is a polycyclic aromatic hydrocarbon, which is a hazardous toxic chemical in the environment. The measurement of low concentrations of fluorene is a subject of intense interest in chemistry and in the environment. Polypyrrole chitosan cobalt ferrite nanoparticles are prepared using the electrochemical method. The prepared layers are characterized using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The layers are used to detect fluorene using the surface plasmon resonance technique at room temperature. The composite layer is evaluated after detection of fluorene using atomic force microscopy. The fluorene is bound on the layer, and the shift of the resonance angle is about 0.0052°, corresponding to the limitation of 0.01 ppm. 展开更多
关键词 Co NP Polypyrrole Chitosan Cobalt Ferrite nanoparticles composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance
下载PDF
The Effects of Nanoparticle Additives on Thermophysical Properties of Concrete Mixtures
12
作者 Kamran Rahmati Shadbad Ali Foroughi-Asl +1 位作者 Siamak Talatahari Sassan Mohasseb 《Open Journal of Civil Engineering》 CAS 2022年第4期587-614,共28页
In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical... In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical properties and durability performance, through the optimization of concrete permeability and the incorporation of the proper nanoparticle type in the concrete matrix. In order to investigate the potential use of nanocomposites as dense barriers against the permeation of liquids into the concrete, three types of nanoparticles including Zinc Oxide (ZnO), Magnesium Oxide (MgO), and composite nanoparticles were used in the present study as partial replacement of cement. Besides, the effect of adding these nanoparticles on both pore structure and mechanical strengths of the concrete at different ages was determined, and scanning electron microscopy (SEM) images were then used to illustrate the uniformity dispersion of nanoparticles in cement paste. It was demonstrated that the addition of a small number of nanoparticles effectively enhances the mechanical properties of concrete and consequently reduces the extent of the water permeation front. Finally, the behavioral models using Genetic Algorithm (GA) programming were developed to describe the time-dependent behavioral characteristics of nanoparticle blended concrete samples in various compressive and tensile stress states at different ages. 展开更多
关键词 nanoparticle Blended Concretes Zinc Oxide (ZnO) Magnesium Oxide (MgO) composite nanoparticles Genetic Algorithm (GA) Programming Time-Dependent Behavioral Model
下载PDF
Tailoring the Meso-Structure of Gold Nanoparticles in Keratin-Based Activated Carbon Toward High-Performance Flexible Sensor 被引量:5
13
作者 Aniruddha BPatil Zhaohui Meng +9 位作者 Ronghui Wu Liyun Ma Zijie Xu Chenyang Shi Wu Qiu Qiang Liu Yifan Zhang Youhui Lin Naibo Lin Xiang Yang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期136-146,共11页
Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanopartic... Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanoparticles@N-doped carbon in situ are prepared using wool keratin as both a novel carbon precursor and a stabilizer.The conducting electrode material is fabricated at 500℃ under customized parameters,which mimics A-B type(two different repeating units) polymeric material and displays excellent deprotonation performance(pH sensitivity).The obtained pH sensor exhibits high pH sensitivity of 57 mV/pH unit and insignificant relative standard deviation of 0.088%.Conversely,the composite carbon material with sp^2 structure prepared at 700℃ is doped with nitrogen and gold nanoparticles,which exhibits good conductivity and electrocatalytic activity for uric acid oxidation.The uric acid sensor has linear response over a range of 1-150 μM and a limit of detection 0.1 μM.These results will provide new avenues where biological material will be the best start,which can be useful to target contradictory applications through molecular engineering at mesoscale. 展开更多
关键词 Wool keratin Structure engineering Metal nanoparticle carbon composite Health monitoring Flexible biosensor
下载PDF
Synthesis and Characterization of Natural Polymer/Inorganic Antibacterial Nanocomposites
14
作者 王勇 程顺林 +2 位作者 WANG Fuzhong GAO Ming CAO Ruirui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期1044-1047,共4页
In order to increase antibacterial abilities and avoid the aggregation of nanoparticle, Ag- ZnO nanocomposites were studied in the network structure which contains bonds, and these bonds are formed by hydrolysis react... In order to increase antibacterial abilities and avoid the aggregation of nanoparticle, Ag- ZnO nanocomposites were studied in the network structure which contains bonds, and these bonds are formed by hydrolysis reaction between Ti(TBOU)4(TBOT) and the water that in Persimmon tannin solution. The size and morphology of Ag-ZnO nanocompos:tes were investigated by scanning electron microscopy (SEM) and field emission scanning electron microscopy(FE-SEM). The antibacterial properties of nanocomposites were examined by minimal bactericidal concentration(MBC). Results showed that this kind of antibacterial nanocomposites composites(ANPs) have excellent antibacterial abilities and without aggregation. 展开更多
关键词 persimmon tannin ANTIBACTERIAL MBC nanoparticle polymer composites
下载PDF
Nonlinear Optieal Properties of Ag Nanopartieles/Glass Composites Measured on a Femtosecond Time Scale
15
作者 杨修春 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第B12期850-852,共3页
Ag nanoparticles embedded in soda-lime silicate glass were fabricated by ion-exchange and subsequently annealing method. Effects of annealing duration on the optical nonlinearity and ultrafast dynamics of Ag nanoparti... Ag nanoparticles embedded in soda-lime silicate glass were fabricated by ion-exchange and subsequently annealing method. Effects of annealing duration on the optical nonlinearity and ultrafast dynamics of Ag nanoparticles in glass were investigated by z-scan technique and pump-probe technique. The results indicate that the third-order optical nonlinearity increases with extending the annealing time, the fast decay process with lifetime of a few picoseconds is attributed to thermal equilibrium process of hot electrons and the energy transfer to lattices by interaction with phonons in the formed Ag nanoparticles, while the slow decay in more than one hundred picoseconds corresponds to the subsequent cooling process by a thermal diffusion from the Ag nanoparticle to the host matrix via the phonon-medium interaction. The fast decay process is accelerated with extending the annealing time. 展开更多
关键词 ion-exchange Ag nanoparticles/glass composites third-order optical nonlinearity
下载PDF
Synthesis and Tribological Properties of Copper-alumina Nanocomposites Prepared by Coprecipitation Technique
16
作者 符学龙 HU Yubing 陶杰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1123-1130,共8页
The objective of this work is to study the synthesis of copper-alumina nanocomposites using the coprecipitation process and hot-pressing method, and investigate their mechanical properties. The effects of calcination ... The objective of this work is to study the synthesis of copper-alumina nanocomposites using the coprecipitation process and hot-pressing method, and investigate their mechanical properties. The effects of calcination temperature on the average size of composite particles and chemical composition after calcination were also analyzed. The sintering parameters including sintering temperature, hot pressure and packing time were optimized to fabricate the alumina nanoparticles reinforced copper matrix composites(CMCs). The density, microhardness and tribological properties of the CMCs reinforced with 1 wt%, 2 wt%, 3 wt%, 4 wt% and 5 wt% of alumina nanoparticles were investigated correspondingly. The results showed that the optimum preparation parameters for the CMCs were 900 ℃ of hot pressing temperature, 27.5 MPa of hot pressure and 2 hrs of packing time. The CMC reinforced with 2 wt% of alumina nanoparticles had the lowest wear rate, with the relative wear resistance of 3.13. 展开更多
关键词 copper matrix composites alumina nanoparticles wear rate coprecipitation method
下载PDF
Shape and size effects of ceria nanoparticles on the impact strength of ceria/epoxy resin composites 被引量:7
17
作者 Xiaoqiang He Dengsong Zhang +2 位作者 Hongrui Li Jianhui Fang Liyi Shi 《Particuology》 SCIE EI CAS CSCD 2011年第1期80-85,共6页
Ceria nanoparticles with various shapes (rods, cubes, and plates) and sizes were controllably synthesized and then introduced into epoxy resin. Subsequently, we investigated correlations between the shape and size o... Ceria nanoparticles with various shapes (rods, cubes, and plates) and sizes were controllably synthesized and then introduced into epoxy resin. Subsequently, we investigated correlations between the shape and size of ceria nanostructures and the mechanical performance of composites. The samples were character- ized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. Compared with commercial ceria filled composites, the composites made with morphology-controlled ceria nanos- tructures show a higher impact strength. It is found that epoxy resins made with high-aspect-ratio ceria nanorods show the highest impact strength, up to 17.27 kJ/m2, which is about four times that of the neat epoxy resin. 展开更多
关键词 nanoparticles Ceria composite Mechanical properties
原文传递
Optical constants and their dispersion of Ag-MgF_2 nanoparticle composite films 被引量:1
18
作者 孙兆奇 孙大明 《Chinese Optics Letters》 SCIE EI CAS CSCD 2004年第4期243-245,共3页
Ag-MgF_2 composite films with different Ag fractions were prepared through a co-evaporation method. Microstructure analysis shows that the films are composed of amorphous MgF_2 matrix and embedded fcc-Ag nanoparticles... Ag-MgF_2 composite films with different Ag fractions were prepared through a co-evaporation method. Microstructure analysis shows that the films are composed of amorphous MgF_2 matrix and embedded fcc-Ag nanoparticles. The optical constants and their dispersion of the films, within the wavelength range of 250 - 650 nm, were measured by reflecting spectroscopic ellipsometry. The maximum of the imaginary part ε~″ of the complex dielectric permittivity attributing to the surface plasmon resonance polarization of the Ag nanoparticles in an Ag-MgF_2 film, and the tangent of the phase-shift angle δ resulting from the dielectric loss of the film, occur at λ= 435 nm and λ= 420 nm, respectively. Based on Maxwell-Garnett effective medium theory, the experimentally observed dispersion spectra were reasonably described. 展开更多
关键词 AG Optical constants and their dispersion of Ag-MgF2 nanoparticle composite films
原文传递
On-Chip Fabrication of Carbon Nanoparticle–Chitosan Composite Membrane
19
作者 Weiping Ding Cheng Liang +2 位作者 Sijie Sun Liqun He Dayong Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第11期1087-1093,共7页
The on-chip fabrication of a carbon nanoparticle-chitosan composite membrane (i.e. a sorbent membrane or a mixed matrix membrane) using laminar flow-based interfacial deprotonation technology was presented in this p... The on-chip fabrication of a carbon nanoparticle-chitosan composite membrane (i.e. a sorbent membrane or a mixed matrix membrane) using laminar flow-based interfacial deprotonation technology was presented in this paper. In addition, the effects of carbon nanoparticles and reactant flow rates on membrane formation were investigated. Finally, the permeability and adsorption capacities of the membrane were discussed. During fabrication, an acidic chitosan solution and a basic buffer solution that contained carbon nanoparticles were introduced into a microchannel. At the flow interface, a freestanding composite membrane with embedded carbon nanoparticles was formed due to the deprotonation of the chitosan molecules. The membrane growth gradually stopped with time from upstream to downstream and the thickness of the membrane increased rapidly and then slowly along the reactant flow direction. The formation of the membrane was divided into two stages. The average growth rate in the first stage was significantly larger than the average growth rate in the second stage. Carbon nanoparticles in the basic solution acted as nucleating agents and made the membrane formation much easier. As the flow rate of the chitosan solution increased, the averaged membrane thickness and the membrane hydraulic permeability initially increased and then decreased. Because of the addition of carbon nanoparticles, the formed membrane had adsorption abilities. The carbon nanoparticle-chitosan composite membrane that was fabricated in this study could be employed for simultaneous adsorption and dialysis in microdevices in the future. 展开更多
关键词 On-chip fabrication composite membrane Carbon nanoparticle Chitosan Interracial deprotonation Mixed matrix membrane
原文传递
Preparation of Polystyrene/Fe3O4 Nanoparticles in Triton X-100/ Sodium Dodecyl Benzenesulfonate Mixed Surfactant System 被引量:4
20
作者 宋根萍 伯洁 郭荣 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2005年第8期997-1000,共4页
The composite nanoparticles of polystyrene/Fe3O4 with a shell-core structure were prepared in the mixed system of Triton X-100 and SDBS. The shell of the composite nanoparticles was formed by polystyrene and the core ... The composite nanoparticles of polystyrene/Fe3O4 with a shell-core structure were prepared in the mixed system of Triton X-100 and SDBS. The shell of the composite nanoparticles was formed by polystyrene and the core by Fe3O4 nanoparticles. The diameter of Fe3O4 nanoparticles is about 10 nm and that of the composite nanoparticles 25-35 nm. The XRD spectra and FTIR spectra show that the enwrapping of polystyrene with Fe3O4 nanoparticles was successful. 展开更多
关键词 POLYSTYRENE FE3O4 composite nanoparticle PREPARATION Triton X-100 sodium dodecyl benzenesulfonate
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部