期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Cerium vanadate/carbon nanotube hybrid composite nanostructures as a high-performance anode material for lithium-ion batteries 被引量:2
1
作者 D.Narsimulu Ashok Kumar Kakarla Jae Su Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期25-32,共8页
The pristine CeVO_(4) and CeVO_(4)/CNT hybrid composite nanostructured samples were facilely synthesized using a simple silicone oil-bath method.From the X-ray diffraction results,the formation of tetragonal CeVO_(4) ... The pristine CeVO_(4) and CeVO_(4)/CNT hybrid composite nanostructured samples were facilely synthesized using a simple silicone oil-bath method.From the X-ray diffraction results,the formation of tetragonal CeVO_(4) with an additional minor phase of V_(2)O_(5) was identified.When investigated as an anode material for lithium(Li)-ion batteries,the CeVO_(4)/CNT hybrid composite nanostructure(HCNS) electrode demonstrated improved Li storage performance over the pristine CeVO_(4).The Li insertion/de-insertion electrochemical reaction with the CeVO_(4) was analyzed on the basis of cyclic voltammetry study.The cyclic voltammetry analysis revealed that the three-step reduction of V^(5+) to V^(3+), V^(3+) to V^(2+), and V^(2+) to V+ processes is involved and among them,only V^(5+) to V^(3+) is reversible during the Li-ion insertion into CeVO_(4).The CeVO_(4)/CNT HCNS electrode exhibited a discharge capacity as high as 443 mA h g^(-1)(capacity retention of 96.3%) over 200 cycles at 100 mA g^(-1), whereas the pristine CeVO_(4) is limited to 138 mA h g^(-1)(capacity retention of 48%).Even at a high current density of 500 mA g^(-1), the CeVO_(4)/CNT HCNS electrode delivered an excellent reversible capacity of 586.82 mA h g^(-1) after 1200 cycles. 展开更多
关键词 Oil-bath synthesis CeVO_(4)/CNT hybrid composite nanostructure ANODE Lithium-ion batteries
下载PDF
Iron-based composite nanostructure catalysts used to produce COx-free hydrogen from ammonia 被引量:5
2
作者 Hui-Zhen Cui Ying-Qiu Gu +4 位作者 Xin-Xin He Shuai Wei Zhao Jin Chun-Jiang Jia Qi-Sheng Song 《Science Bulletin》 SCIE EI CAS CSCD 2016年第3期220-226,共7页
Iron-based composite nanostructures with ceria or titania as shell coating on naked iron spheres were successfully synthesized and used to catalyze ammonia decomposition. The structure and texture of fresh and used ca... Iron-based composite nanostructures with ceria or titania as shell coating on naked iron spheres were successfully synthesized and used to catalyze ammonia decomposition. The structure and texture of fresh and used catalysts were characterized by transmission electron microscopy, X-ray diffraction, in situ X-ray diffraction, temperature-programmed reduction by hydrogen, and N2 adsorption-desorption. For ammonia decomposition, the iron-based composite catalyst coated with cerium and titanium showed excellent catalytic activity compared with naked iron sphere catalyst, with the former yielding nearly 100 % ammonia conversions at 650 ℃ and showing high stability in the catalysis test (for 60 h) at 600 ℃ with a space velocity of 24,000 cm3 gcat h-1. These results showed that adding cerium and titanium played a key role in improving catalytic activity for ammonia decomposition and enabling high thermal stability. 展开更多
关键词 composite nanostructures Ammoniadecomposition In situ XRD TPR
原文传递
Hydrogen storage properties of Mg-TiO_2 composite powder prepared by arc plasma method 被引量:4
3
作者 潘银成 邹建新 +1 位作者 曾小勤 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3834-3839,共6页
Mg-based Mg-TiO2 composite powder was prepared by arc plasma evaporation of the Mg+5%TiO2 mixture followed by passivation in air. ICP, XRD and SEM techniques were used to characterize the composition, phase component... Mg-based Mg-TiO2 composite powder was prepared by arc plasma evaporation of the Mg+5%TiO2 mixture followed by passivation in air. ICP, XRD and SEM techniques were used to characterize the composition, phase components and microstructure of the composite powder. The hydrogen sorption properties of the composite powder were investigated by DSC and PCT techniques. According to the data from PCT measurements, the hydrogenation enthalpy and entropy changes of the composite powder are calculated to be-71.5 kJ/mol and-130.1 J/(K·mol), respectively. Besides, the hydrogenation activation energy is determined to be 77.2 kJ/ mol. The results indicate that TiO2 added into Mg by arc plasma method can act as a catalyst to improve the hydrogen sorption kinetic properties of Mg. 展开更多
关键词 nanostructured composite Mg TIO2 hydrogen storage arc plasma method
下载PDF
Molten salt synthesis of α-MnO_(2)/Mn_(2)O_(3) nanocomposite as a high-performance cathode material for aqueous zinc-ion batteries 被引量:3
4
作者 Aixiang Huang Weijun Zhou +3 位作者 Anran Wang Minfeng Chen Qinghua Tian Jizhang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期475-481,共7页
Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge to develop high-performance cathode materials with an appr... Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge to develop high-performance cathode materials with an appropriate method that is easy to realize massive production.Herein,we use a molten salt method to synthesize nanostructured manganese oxides.The crystalline phases of the manganese oxides can be tuned by changing the amount of reduced graphene oxide added to the reactant mixture.It is found that the α-MnO_(2)/Mn_(2)O_(3) nanocomposite with the largest mass ratio of Mn_(2)O_(3) delivers the best electrochemical performances among all the products.And its rate capability and cyclability can be significantly improved by modifying the Zn anode with carbon black coating and nanocellulose binder.In this situation,the nanocomposite can deliver high discharging capacities of 322.1 and 213.6 mAh g^(-1) at 0.2 and 3 Ag^(-1),respectively.After 1000 cycles,it can retain 86.2% of the capacity at the 2 nd cycle.Thus,this nanocomposite holds great promise for practical applications. 展开更多
关键词 Manganese oxides Molten salt synthesis nanostructured composites Aqueous batteries Zinc ion storage
下载PDF
Review on porous nanomaterials for adsorption and photocatalytic conversion of CO_2 被引量:7
5
作者 Yajuan Ma Zemei Wang +1 位作者 Xiaofeng Xu Jingyu Wang 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第12期1956-1969,共14页
Photocatalytic conversion of“greenhouse gas”CO2is considered to be one of the most effective ways to alleviate current energy and environmental problems without additional energy consumption and pollutant emission.T... Photocatalytic conversion of“greenhouse gas”CO2is considered to be one of the most effective ways to alleviate current energy and environmental problems without additional energy consumption and pollutant emission.The performance of many traditional semiconductor photocatalysts is not efficient enough to satisfy the requirements of practical applications because of their limited specific surface area and low CO2adsorption capacity.Therefore,the exploration of photocatalysts with high CO2uptake is significant in the field of CO2conversion.Recently the porous materials appeared to be a kind of superior candidate for enriching the CO2molecules on the surface of photocatalysts for catalytic conversion.This paper first summarizes the advances in the development of nanoporous adsorbents for CO2capture.Three main classes of porous materials are considered:inorganic porous materials,metal organic frameworks,and microporous organic polymers.Based on systematic research on CO2uptake,we then highlight the recent progress in these porous‐material‐based photocatalysts for CO2conversion.Benefiting from the improved CO2uptake capacity,the porous‐material‐based photocatalysts exhibited remarkably enhanced efficiency in the reduction of CO2to chemical fuels,such as CO,CH4,and CH3OH.Based on reported recent achievements,we predict a trend of development in multifunctional materials with both high adsorption capability and photocatalytic performance for CO2utilization. 展开更多
关键词 Porous material composite nanostructure CO2 adsorption PHOTOCATALYSIS CO2 conversion
下载PDF
Hybrid Silicon-Carbon Nanostructured Composites as Superior Anodes for Lithium Ion Batteries 被引量:9
6
作者 Po-Chiang Chen Jing Xu +1 位作者 Haitian Chen Chongwu Zhou 《Nano Research》 SCIE EI CAS CSCD 2011年第3期290-296,共7页
We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion ba... We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of 〉2000 mA.h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of 〉98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon-carbon nanostructured composites for application in lithium ion batteries. 展开更多
关键词 Amorphous silicon carbon nanofibers lithium ion batteries hybrid nanostructured composite
原文传递
The Preparation and Gas-sensing Property of Nanosize γ-Fe_2O_3/SiO_2 被引量:1
7
作者 马丽景 闫涛 +4 位作者 白守礼 黄小葳 宋永吉 陈霭璠 LIU Chung Chium 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期282-285,共4页
Nanostructured γ-Fe2O3/SiO2 complex oxide was prepared by sol-gel method with tetraethoxysilane and iron nitrate as precursors. The particle size distribution, thermal and phase stabilities and gas sensing properties... Nanostructured γ-Fe2O3/SiO2 complex oxide was prepared by sol-gel method with tetraethoxysilane and iron nitrate as precursors. The particle size distribution, thermal and phase stabilities and gas sensing properties were systematically characterized by TEM, granularity distribution, TG-DTA, XRD and gas sensitivity measurements. The particle size is about 10 nm and size distribution is very narrow. The sensitivity of the sensing element to CO, H2, C2H4, C6H6 and the effects of calcination temperature on the sensitivity and conductance of gases were examined. The combination of excellent thermal stability and tunable gas sensing properties through careful control of the preparation and judicious selection of material compositions gives rise to novel nanocomposites, which is attractive for the sensitive and selective detection of reducing gases and some hydrocarbon gases. 展开更多
关键词 nanostructural composites FE2O3 SIO2 gas-sensing properties
下载PDF
Suppressing Al2O3 nanoparticle coarsening and Cu nanograin growth of milled nanostructured Cu-5vol.%Al2O3 composite powder particles by doping with Ti 被引量:1
8
作者 Dengshan Zhou Hongwei Geng +3 位作者 Wei Zeng Deliang Zhang Charlie Kong Paul Munroe 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第11期1323-1328,共6页
Both the coarsening of Al2O3 nanoparticles and the growth of Cu nanograins of mechanically milled nanostructured Cu-5 vol.%Al2O3 composites with, and without, trace amounts of Ti during annealing at973 K for 1 h were ... Both the coarsening of Al2O3 nanoparticles and the growth of Cu nanograins of mechanically milled nanostructured Cu-5 vol.%Al2O3 composites with, and without, trace amounts of Ti during annealing at973 K for 1 h were investigated. It was found that doping with a small amount of Ti(e.g. 0.2 wt%) in a nanostructured Cu-5 vol.%Al2O3 composite effectively suppressed the coarsening of Al2O3 nanoparticles during exposure at this temperature. Further, the Ti addition also prevented the concomitant abnormal growth of the copper grains normally caused by the coarsening of the Al2O3 nanoparticles. Energy dispersive X-ray spectroscopy analysis of the Al2O3 nanoparticles in the annealed Cu-5 vol.%Al2 O3-0.2 wt%Ti sample suggested that the Ti atoms either diffused into the Al2O3 nanoparticles or segregated to the Cu/Al2O3 interfaces to form Ti-doped Al2O3 nanoparticles, which was more stable than Ti-free Al2O3 nanoparticles during annealing at high homologous temperatures. 展开更多
关键词 nanostructured copper matrix composites Minor alloying Annealing Grain growth Particle coarsening
原文传递
Effect of lubricant sulfur on the morphology and elemental composition of diesel exhaust particles 被引量:3
9
作者 Piqiang Tan Yuan Li Hanyan Shen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期354-362,共9页
This work investigates the effects of lubricant sulfur contents on the morphology,nanostructure,size distribution and elemental composition of diesel exhaust particle on a light-duty diesel engine. Three kinds of lubr... This work investigates the effects of lubricant sulfur contents on the morphology,nanostructure,size distribution and elemental composition of diesel exhaust particle on a light-duty diesel engine. Three kinds of lubricant(LS-oil,MS-oil and HS-oil,all of which have different sulfur contents:0.182%,0.583% and 1.06%,respectively)were used in this study. The morphologies and nanostructures of exhaust particles were analyzed using high-resolution transmission electron microscopy(TEM). Size distributions of primary particles were determined through advanced image-processing software. Elemental compositions of exhaust particles were obtained through X-ray energy dispersive spectroscopy(EDS). Results show that as lubricant sulfur contents increase,the macroscopic structure of diesel exhaust particles turn from chain-like to a more complex agglomerate. The inner cores of the core-shell structure belonging to these primary particles change little; the shell thickness decreases,and the spacing of carbon layer gradually descends,and amorphous materials that attached onto outer carbon layer of primary particles increase. Size distributions of primary particles present a unimodal and normal distribution,and higher sulfur contents lead to larger size primary particles. The sulfur content in lubricants directly affects the chemical composition in the particles. The content of C(carbon)decreases as sulfur increases in the lubricants,while the contents of O(oxygen),S(sulfur)and trace elements(including S,Si(silicon),Fe(ferrum),P(phosphorus),Ca(calcium),Zn(zinc),Mg(magnesium),Cl(chlorine)and Ni(nickel))all increase in particles. 展开更多
关键词 Diesel exhaust particle Lubricant sulfur Morphology nanostructure Primary particle size Elemental composition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部