The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for...The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage.展开更多
Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the ...Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the underlying untreated stratum. Due to the changing permeability property of CFG piles, the whole consolidation process of the composite ground with CFG piles was divided into two stages, i.e., the early stage(permeable CFG pile bodies) and the later stage(impermeable pile bodies). Then, the consolidation equation of the composite foundation with CFG piles was established by using the Terzaghi one-dimensional consolidation theory. Consequently, the unified formula to calculate the excess pore water pressure was derived with the specific solutions for the consolidation degree of composite ground, reinforced area and underlying stratum under instant load obtained respectively. Finally, combined with a numerical example, influencing rules by main factors(including the replacement rate m, the treatment depth h1, the permeability coefficient Ks1, Kv2 and compression modulus Es1, Es2 of reinforced area and underlying stratum) on the consolidation property of composite ground with CFG piles were discussed in detail. The result shows that the consolidation velocity of underlying stratum is slower than that of the reinforced area. However, the consolidation velocity of underlying stratum is slow at first then fast as a result of the transferring of effective stress to the underlying stratum during the dissipating process of excess pore water pressure.展开更多
Submicron-scale TiC particle reinforced titanium matrix composites(TMCs) were prepared by shock wave consolidation technique at detonation speed of 2 5005 000 m/s. The microstructures were studied by scanning electron...Submicron-scale TiC particle reinforced titanium matrix composites(TMCs) were prepared by shock wave consolidation technique at detonation speed of 2 5005 000 m/s. The microstructures were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The compressive strength and hardness values of the composites were also determined. The results show that the composites have higher compressive yield strength and hardness values than hot-rolled pure titanium. Twins in the microstructure of TMCs show that titanium particles undergo plastic deformation during consolidation process. The fine grains with size less than 1 μm often locate in the boundaries among the titanium particles. TiC particles seem to keep unchanged during the consolidation. These bring about the increase in strength and hardness for the composites. The detonation speed of 3 200 m/s is proper parameter for compacting powder in the present work.展开更多
Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C part...Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C particulates and Al for the as-consolidated composites were detected by X-ray photoelectron spectroscopy(XPS). The interfacial bondings of the composites were characterized by scanning electron microscopy(SEM). The elements at the interface were linearly scanned by energy dispersive spectroscopy(EDS) and the EDS mappings of Si and Al were also obtained. The values of the nanohardness at different positions within 2 μm from the boundary of Si C particulate were measured. The results show that after ECAP-T, interfacial reaction which inhibits injurious interfacial phase occurs between Al and the oxide layer of Si C, and the element interdiffusion which can enhance interfacial bonding exists between Al and Si C. As ECAP-T passes increase, the reaction degree is intensified and the element interdiffusion layer is thickened, leading to the more smooth transition of the hardness from Si C to Al.展开更多
Metal matrix composites (MMCs) offer extra strength and high temperature capabilities in comparison with unrein-forced metals. Aluminum composites possess higher stiffness, strength, fatigue properties and low weight ...Metal matrix composites (MMCs) offer extra strength and high temperature capabilities in comparison with unrein-forced metals. Aluminum composites possess higher stiffness, strength, fatigue properties and low weight advantages. Carbon fiber reinforced Al composites (Al-Cf) and silicon carbide particulate reinforced Al composites (AI-SiCp) were shock densified using axisymmetric assemblies for underwater explosions. Unidirectional planar shock waves were applied to obtain uniform consolidation of the composites. The energy generator was a high explosive of 6.9 km/s detonation velocity. Irregular morphological powders of Al were the base material. The reinforcement ratio was 15 Vol. pet for Al-Cf composites and 30 Vol. pet for AI-SiCp composites. The microstructural and the strength characteristics of the shock consolidated Al composites are reported.展开更多
The consolidation behavior of mixed in place cement and lime/cement mixed column was studied. Consolidation of the composite foundation was modeled as a three dimensional axi symmetric problem. The authors used t...The consolidation behavior of mixed in place cement and lime/cement mixed column was studied. Consolidation of the composite foundation was modeled as a three dimensional axi symmetric problem. The authors used the finite difference method to obtain the pore pressure variation with time at any location below the surface. A computer program developed by the authors was used to draw some interesting conclusions about the consolidation behaviors of cement and lime/cement mixed pile foundation. Finally, a combined model including the permeability coefficients of cement mixed piles and soil, was studied and its feasibility was evaluated.展开更多
Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures wer...Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures were examined with an electron probe microanalyzer and a high-resolution transmission electron microscope,respectively.The consolidation of composites consisted of two thermal processes:vacuum degassing(VD)and hot isostatic pressing(HIP).During consolidation,not only the three major elements(Al,W,and Ce)but also the alloying elements(Mg and Cu)in the Al matrix contributed to amorphization.At VD and HIP temperatures of 723 K and763 K,interfacial amorphous layers were formed within the composite.Three diffusion processes were necessary for interfacial amorphization:(a)long-range diffusion of Mg from the Al matrix to the interfaces during VD;(b)long-range diffusion of Cu from the Al matrix to the interfaces during HIP;(c)short-range diffusion of W toward the Al matrix during HIP.The newly formed interfacial Al-Ce-Cu-W amorphous layers can be categorized under the Al-Ce-TM(TM:transition metals)amorphous system.展开更多
In actual engineering practice,the stress increment within a composite foundation caused by external loads may vary simultaneously with depth and time.In addition,column installation always leads to a decay of soil pe...In actual engineering practice,the stress increment within a composite foundation caused by external loads may vary simultaneously with depth and time.In addition,column installation always leads to a decay of soil permeability towards the column.However,almost none of the consolidation theories for composite foundation comprehensively consider these factors until now.For this reason,a stress increment due to external loads changing simultaneously with time and depth was incorporated into the analysis,and three possible variation patterns of soil's horizontal permeability coefficient were considered to account for the detrimental influence of column installation.These three patterns included a constant distribution pattern(Pattern I),a linear distribution pattern(Pattern II),and a parabolic distribution pattern(Pattern III).Solutions were obtained for the average excess pore water pressures and the average degree of consolidation respectively.Then several special cases were discussed in detail based on the general solution obtained.Finally,comparisons were made,and the results show that the present solution is the most general rigorous solution in the literature,and it can be broken down into a number of previous solutions.The consolidation rate is accelerated with the increase in the value of the top to the bottom stress ratio.The consolidation rate calculated by the solution for Pattern I is less than that for Pattern II,which in turn is less than that for Pattern III.展开更多
Al;Cu;Ti;metallic glass(AMG) reinforced Al matrix composites were consolidated by equal channel angular pressing(ECAP) process. The effects of ECAP consolidation temperature ranging from room temperature to just b...Al;Cu;Ti;metallic glass(AMG) reinforced Al matrix composites were consolidated by equal channel angular pressing(ECAP) process. The effects of ECAP consolidation temperature ranging from room temperature to just below the first crystallization temperature of metallic glass on the consolidation of composites were investigated in terms of the relative densities, structural evolutions and mechanical properties of composites. Some intermetallic compounds included Al;CuTi;, Al;Ti and Al;Cu;precipitated from metallic glass particles at consolidation temperature of 300?C. Consolidation temperature did not affect the matrix grains size of the composite. Quantitative analysis revealed that the distribution of reinforcing particles was considerably dependent on consolidation temperature. Density of the composite was increased by increasing the consolidation temperature to 250?C. The composite consolidated at250?C through ECAP process, exhibited the best combination of yield strength and ductility of 184 MPa and 48%, respectively.展开更多
基金funding support from the National Natural Science Foundation of China(Grant Nos.52178373 and 51878657).
文摘The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage.
基金Project(51378197)supported by the National Natural Science Foundation of China
文摘Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the underlying untreated stratum. Due to the changing permeability property of CFG piles, the whole consolidation process of the composite ground with CFG piles was divided into two stages, i.e., the early stage(permeable CFG pile bodies) and the later stage(impermeable pile bodies). Then, the consolidation equation of the composite foundation with CFG piles was established by using the Terzaghi one-dimensional consolidation theory. Consequently, the unified formula to calculate the excess pore water pressure was derived with the specific solutions for the consolidation degree of composite ground, reinforced area and underlying stratum under instant load obtained respectively. Finally, combined with a numerical example, influencing rules by main factors(including the replacement rate m, the treatment depth h1, the permeability coefficient Ks1, Kv2 and compression modulus Es1, Es2 of reinforced area and underlying stratum) on the consolidation property of composite ground with CFG piles were discussed in detail. The result shows that the consolidation velocity of underlying stratum is slower than that of the reinforced area. However, the consolidation velocity of underlying stratum is slow at first then fast as a result of the transferring of effective stress to the underlying stratum during the dissipating process of excess pore water pressure.
文摘Submicron-scale TiC particle reinforced titanium matrix composites(TMCs) were prepared by shock wave consolidation technique at detonation speed of 2 5005 000 m/s. The microstructures were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The compressive strength and hardness values of the composites were also determined. The results show that the composites have higher compressive yield strength and hardness values than hot-rolled pure titanium. Twins in the microstructure of TMCs show that titanium particles undergo plastic deformation during consolidation process. The fine grains with size less than 1 μm often locate in the boundaries among the titanium particles. TiC particles seem to keep unchanged during the consolidation. These bring about the increase in strength and hardness for the composites. The detonation speed of 3 200 m/s is proper parameter for compacting powder in the present work.
基金Project(51175138)supported by the National Natural Science Foundation of ChinaProjects(2012HGZX0030,2013HGCH0011)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20100111110003)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C particulates and Al for the as-consolidated composites were detected by X-ray photoelectron spectroscopy(XPS). The interfacial bondings of the composites were characterized by scanning electron microscopy(SEM). The elements at the interface were linearly scanned by energy dispersive spectroscopy(EDS) and the EDS mappings of Si and Al were also obtained. The values of the nanohardness at different positions within 2 μm from the boundary of Si C particulate were measured. The results show that after ECAP-T, interfacial reaction which inhibits injurious interfacial phase occurs between Al and the oxide layer of Si C, and the element interdiffusion which can enhance interfacial bonding exists between Al and Si C. As ECAP-T passes increase, the reaction degree is intensified and the element interdiffusion layer is thickened, leading to the more smooth transition of the hardness from Si C to Al.
文摘Metal matrix composites (MMCs) offer extra strength and high temperature capabilities in comparison with unrein-forced metals. Aluminum composites possess higher stiffness, strength, fatigue properties and low weight advantages. Carbon fiber reinforced Al composites (Al-Cf) and silicon carbide particulate reinforced Al composites (AI-SiCp) were shock densified using axisymmetric assemblies for underwater explosions. Unidirectional planar shock waves were applied to obtain uniform consolidation of the composites. The energy generator was a high explosive of 6.9 km/s detonation velocity. Irregular morphological powders of Al were the base material. The reinforcement ratio was 15 Vol. pet for Al-Cf composites and 30 Vol. pet for AI-SiCp composites. The microstructural and the strength characteristics of the shock consolidated Al composites are reported.
文摘The consolidation behavior of mixed in place cement and lime/cement mixed column was studied. Consolidation of the composite foundation was modeled as a three dimensional axi symmetric problem. The authors used the finite difference method to obtain the pore pressure variation with time at any location below the surface. A computer program developed by the authors was used to draw some interesting conclusions about the consolidation behaviors of cement and lime/cement mixed pile foundation. Finally, a combined model including the permeability coefficients of cement mixed piles and soil, was studied and its feasibility was evaluated.
文摘Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures were examined with an electron probe microanalyzer and a high-resolution transmission electron microscope,respectively.The consolidation of composites consisted of two thermal processes:vacuum degassing(VD)and hot isostatic pressing(HIP).During consolidation,not only the three major elements(Al,W,and Ce)but also the alloying elements(Mg and Cu)in the Al matrix contributed to amorphization.At VD and HIP temperatures of 723 K and763 K,interfacial amorphous layers were formed within the composite.Three diffusion processes were necessary for interfacial amorphization:(a)long-range diffusion of Mg from the Al matrix to the interfaces during VD;(b)long-range diffusion of Cu from the Al matrix to the interfaces during HIP;(c)short-range diffusion of W toward the Al matrix during HIP.The newly formed interfacial Al-Ce-Cu-W amorphous layers can be categorized under the Al-Ce-TM(TM:transition metals)amorphous system.
基金Project supported by the National Natural Science Foundation of China(No.51009135)the National Science Foundation for Post-doctoral Scientists of China(No.20100481183)the Science Foundation for Young Scholars of China University of Mining&Technology(No.2009A008)
文摘In actual engineering practice,the stress increment within a composite foundation caused by external loads may vary simultaneously with depth and time.In addition,column installation always leads to a decay of soil permeability towards the column.However,almost none of the consolidation theories for composite foundation comprehensively consider these factors until now.For this reason,a stress increment due to external loads changing simultaneously with time and depth was incorporated into the analysis,and three possible variation patterns of soil's horizontal permeability coefficient were considered to account for the detrimental influence of column installation.These three patterns included a constant distribution pattern(Pattern I),a linear distribution pattern(Pattern II),and a parabolic distribution pattern(Pattern III).Solutions were obtained for the average excess pore water pressures and the average degree of consolidation respectively.Then several special cases were discussed in detail based on the general solution obtained.Finally,comparisons were made,and the results show that the present solution is the most general rigorous solution in the literature,and it can be broken down into a number of previous solutions.The consolidation rate is accelerated with the increase in the value of the top to the bottom stress ratio.The consolidation rate calculated by the solution for Pattern I is less than that for Pattern II,which in turn is less than that for Pattern III.
基金the support of Iran National Science Foundation(INSF)
文摘Al;Cu;Ti;metallic glass(AMG) reinforced Al matrix composites were consolidated by equal channel angular pressing(ECAP) process. The effects of ECAP consolidation temperature ranging from room temperature to just below the first crystallization temperature of metallic glass on the consolidation of composites were investigated in terms of the relative densities, structural evolutions and mechanical properties of composites. Some intermetallic compounds included Al;CuTi;, Al;Ti and Al;Cu;precipitated from metallic glass particles at consolidation temperature of 300?C. Consolidation temperature did not affect the matrix grains size of the composite. Quantitative analysis revealed that the distribution of reinforcing particles was considerably dependent on consolidation temperature. Density of the composite was increased by increasing the consolidation temperature to 250?C. The composite consolidated at250?C through ECAP process, exhibited the best combination of yield strength and ductility of 184 MPa and 48%, respectively.