期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Properties of Hot-Pressed Al_2O_3-Fe Composites 被引量:4
1
作者 M.M.El-Sayed Seleman, Xudong SUN and Liang ZUO Department of Materials Science and Engineering, Northeastern University, Shenyang 110006, China K.A.Khalil Powder Metallurgy Institute, Central South University, Changsha 410083, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期538-542,共5页
Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were... Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were obtained for addition up to 10 vol. pct Fe, but relative density decreased gradually with further increase in Fe addition. The materials exhibit a homogeneous dispersion of Fe. Fracture strength of the composites exhibits a maximum value of 604 MPa at 15 vol. pct Fe, which is 1.5 times that of alumina alone. Fracture toughness increases with the increase in Fe content, reaching 7.5 MPa.m(1/2) at 20 vol. pct Fe. The theoretical values of fracture toughness was calculated and compared with the experimental one. Toughening mechanisms of the composites are also discussed. 展开更多
关键词 FE Properties of Hot-Pressed Al2o3-fe composites AL
下载PDF
Experimental and Computational Study of the Microwave Absorption Properties of Recycled α-Fe2O3/OPEFB Fiber/PCL Multi-Layered Composites
2
作者 Ebenezer Ekow Mensah Raba’ah Syahidah Azis Zulkifly Abbas 《Journal of Materials Science and Chemical Engineering》 2022年第3期30-41,共12页
The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. Th... The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range. 展开更多
关键词 Multi-Layered composites Recycled α-fe2o3 Reflection Loss oPEFB Fiber Relative Complex Permittivity
下载PDF
磁性纳米纤维复合材料原位诱导体内成骨的研究(英文) 被引量:3
3
作者 许振 孟洁 +5 位作者 张宇 常晓 边焱焱 孔桦 顾宁 许海燕 《东南大学学报(医学版)》 CAS 2011年第1期1-6,共6页
目的:研究一种新型顺磁性的纳米纤维复合支架γ-Fe2O3/nHAP/PDLLA在弱磁场下体内诱导新骨形成的功效。方法:纳米纤维复合材料支架通过电纺丝方法制成,支架内部的微观结构用扫描电镜(SEM)进行表征。将支架植入兔横突根部骨缺损处并在12... 目的:研究一种新型顺磁性的纳米纤维复合支架γ-Fe2O3/nHAP/PDLLA在弱磁场下体内诱导新骨形成的功效。方法:纳米纤维复合材料支架通过电纺丝方法制成,支架内部的微观结构用扫描电镜(SEM)进行表征。将支架植入兔横突根部骨缺损处并在12周后处死动物,应用组织学方法研究支架在动物体内原位诱导新骨形成和胶原蛋白沉积的情况。结果:与对照的nHAP/PDLLA纳米纤维支架相比,磁性纳米纤维复合支架上有更多的Ⅰ型胶原沉积,新骨的生成量也明显增加。结论:磁性纳米纤维复合支架能够促进骨缺损部位的新骨生成,在引导骨组织再生与修复方面具有应用潜能。 展开更多
关键词 纳米纤维支架 γ-fe2o3/nhap/pdlla复合材料 Ⅰ型胶原 骨再生
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部