With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an e...With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an essential role in the safety and electrochemical performance of the cells.Composite polymer electrolytes(CPEs)are considered as one of the most promising candidates among all solid-state electrolytes due to their excellent comprehensive performance.In this review,we briefly introduce the components of CPEs,such as the polymer matrix and the species of fillers,as well as the integration of fillers in the polymers.In particular,we focus on the two major obstacles that affect the development of CPEs:the low ionic conductivity of the electrolyte and high interfacial impedance.We provide insight into the factors influencing ionic conductivity,in terms of macroscopic and microscopic aspects,including the aggregated structure of the polymer,ion migration rate and carrier concentration.In addition,we also discuss the electrode-electrolyte interface and summarize methods for improving this interface.It is expected that this review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for improving the compatibility of the electrode-electrolyte interface.展开更多
Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)t...Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.展开更多
(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the ...(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.展开更多
The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).L...The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).Li-ion can transfer along the PEO chain or across the layer of TpPa-SO_(3) Li within the nanochannels,resulting in a high Li-ion conductivity of3.01×10^(-4)S/cm at 60℃.When the CPE with 0.75 wt.%TpPa-SO_(3) Li was used in the LiFePO_(4)‖Li solid-state battery,the cell delivered a stable capacity of 125 mA·h/g after 250 cycles at 0.5 C,60℃.In comparison,the cell using the CPE without TpPa-SO_(3) Li exhibited a capacity of only 118 mA·h/g.展开更多
PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivit...PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10、5 Scm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.展开更多
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical...Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical and chemical properties of the modified CPEs were studied by SEM, TG-DSC and electrochemical methods. The results show that the CPE modified with 10% La2O3 (mass fraction) has the best practical applicability, which indicates that the thermal and electrochemical stability can reach over 400 ℃ and 4.5 V, respectively, and temperature dependence of ionic conductivity follows Vogel-Tamman-Fulcher (VTF) relationship and ionic conductivity at room temperature is up to 3.3 mS/cm. The interfacial resistance Ri reaches a stable value about 557 Ω after 6 d storage.展开更多
A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (eth...A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH_2C1_2 The ionicconductivity, electrochemical stability, interfacial characteristic and thermal behavior of thecomposite polymer electrolyte were studied by the measurements of AC impedance spectroscopy, linearsweep voltammetry and differential scanning calorimetry (DSC), respectively. The glass transitiontemperature acts as a function of salt concentration, which increases with the LiClO_4 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relationbetween the filled fumed SiO_2 and the lithium salt in the composite polymer electrolyte. Over thesalt concentration range and the measured temperature, the maximum ionic conductivity of thecomposite polymer electrolyte (10^(-4.41) S/cm) appeared at EO/Li=25 (mole ratio) and 30 deg C, andthe beginning oxidative degradation potential versus Li beyond 5 V.展开更多
Satisfactory ionic conductivity,excellent mechanical stability,and high-temperature resistance are the prerequisites for the safe application of solid polymer electrolytes(SPEs)in all-solid-state lithium metal batteri...Satisfactory ionic conductivity,excellent mechanical stability,and high-temperature resistance are the prerequisites for the safe application of solid polymer electrolytes(SPEs)in all-solid-state lithium metal batteries(ASSLMBs).In this study,a novel poly(m-phenylene isophthalamide)(PMIA)-core/poly(ethylene oxide)(PEO)-shell nanofiber membrane and the functional Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)ceramic nanopar-ticle are simultaneously introduced into the PEO-based SPEs to prepare composite polymer electrolytes(CPEs).The core PMIA layer of composite nanofibers can greatly improve the mechanical strength and thermal stability of the CPEs,while the shell PEO layer can provide the 3D continuous transport channels for lithium ions.In addition,the introduction of functional LLZTO nanoparticle not only reduces the crys-tallinity of PEO,but also promotes the dissociation of lithium salts and releases more Li^(+)ions through its interaction with the Lewis acid-base of anions,thereby overall improving the transport of lithium ions.Consequently,the optimized CPEs present high ionic conductivity of 1.38×10^(−4)S/cm at 30℃,signifi-cantly improved mechanical strength(8.5 MPa),remarkable thermal stability(without obvious shrinkage at 150℃),and conspicuous Li dendrites blocking ability(>1800 h).The CPEs also both have good com-patibility and cyclic stability with LiFePO_(4)(>2000 cycles)and high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)(>500 cycles)cathodes.In addition,even at low temperature(40℃),the assembled LiFePO4/CPEs/Li bat-tery still can cycle stably.The novel design can provide an effective way to exploit high-performance solid-state electrolytes.展开更多
Composite polymer electrolytes(CPEs)are considered to be the most promising to break through the performance and safety limitations of traditional lithium-ion batteries because of their excellent electrochemical and m...Composite polymer electrolytes(CPEs)are considered to be the most promising to break through the performance and safety limitations of traditional lithium-ion batteries because of their excellent electrochemical and mechanical properties.Aiming at the performance limitations of the most common polyether matrix such as poly(ethylene oxide)(PEO),a novel poly(cyclocarbonate-ether)polymer matrix was prepared by in-situ thermal curing,the weaker interaction between its C=O bond and Li^(+)can promote the rapid transport of Li^(+).Adding ionic liquid and active filler LLZTO to the matrix can synergistically reduce the crystallinity of matrix and promote the dissociation of lithium salts.In addition,a 3D functional skeleton made of polyacrylonitrile(PAN)and lithium fluoride(LiF)can greatly improve the mechanical strength of polymer matrix after cold pressing,and Li F is also conducive to interface stability.The thickness of the optimal sample(VP6L/CPL)was only 25μm,and its ionic conductivity,lithium ion transference number,and electrochemical stability window were as high as 7.17×10^(-4)S cm^(-1)(25℃),0.54 and 5.4 V,respectively,while the mechanical strength reaches 6.1 MPa,which can fully inhibit the growth of lithium dendrites.The excellent electrochemical performance and mechanical strength enable the assembled Li|VP6L/CPL|Li battery to be continuously charged for over 200 h and cycled stably for more than 2300 h,and Li|VP6L/CPL|LFP battery can be stably cycled for more than 400 and 550 cycles at 1 C(40℃)and 0.5 C(25℃),respectively.展开更多
Solid-state lithium batteries(SSLBs)have been identified as one kind of the most promising energy conversion and storage devices because of their safety,high energy density,and long cycling life.The development of sol...Solid-state lithium batteries(SSLBs)have been identified as one kind of the most promising energy conversion and storage devices because of their safety,high energy density,and long cycling life.The development of solid-state electrolyte is vital to commercialize SSLBs.Composite polymer electrolyte(CPE),derived by compositing inorganic particles into solid polymer electrolyte has become the most practical species for SSLBs because it inherits the advantages of polymer electrolyte and simultaneously achieves enhanced ionic conductivity and mechanical properties.The characteristics of inorganic particles and their interaction with polymers strongly impact the performance of CPE,improving its ionic conductivity,mechanical properties,thermal and electrochemical stability,as well as interface compatibility with both electrodes.In this review,the effects of particle characteristics including its species,size,proportion,morphology on the ionic conductivity and mechanical properties of CPE are reviewed.Meanwhile,some novel composite strategies are also introduced including surface modification,hybridization,and alignment of particles in polymer matrices,as well as some new preparation methods of CPE.The interactions between particles and other components in CPE including polymer matrices or lithium salt are particularly focused herein to reveal the lithium conductive mechanism.Finally,a perspective on the direction of future CPE development for SSLBs is presented.展开更多
Substituting liquid electrolytes with solid elec-trolytes is considered as an important strategy to solve the problem of flammability and explosion for traditional lithium-ion batteries(LIB).However,neither inorganic ...Substituting liquid electrolytes with solid elec-trolytes is considered as an important strategy to solve the problem of flammability and explosion for traditional lithium-ion batteries(LIB).However,neither inorganic solid electrolytes(ISE)nor solid polymer electrolytes(SPE)alone can meet the operating requirements for room-temperature(RT)all-solid-state lithium metal batteries(ASSLMB).Here,we report a three-dimensional(3D)nanofiber framework reinforced polyethylene oxide(PEO)-based composite polymer electrolytes(CPE)through con-structing a nanofiber framework combining polyacryloni-trile(PAN)and fast Li-ion conductor Li_(0.33)La_(0.557)TiO_(3)(LLTO)framework by electrospinning method.Mean-while,the PEO electrolyte filled in the pores of the PAN/LLTO nanofiber framework can effectively isolate the direct contact between the chemically active Ti^(4+)in LLTO with lithium metal,thereby avoiding the occurrence of interfacial reactions.Enhanced electrochemical stability makes a wide electrochemical window up to 4.8 V with an ionic conductivity of about 9.87×10^(-5)S·cm^(-1)at RT.Benefiting from the excellent lithium dendrite growth inhibition ability of 3D PAN/LLTO nanofiber framework,especially when the mass of LLTO reaches twice that of the PAN,Li/Li symmetric cell could cycle stably for 1000 h without a short circuit.In addition,under 30℃,the LiFePO_(4)/Li ASSLMB using such CPE delivers large capacities of 156.2 and 140 mAh·g^(-1)at 0.2C and 0.5C,respectively.These results provide a new insight for the development of the next generation of safe,high-perfor-mance ASSLMBs.展开更多
Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3...Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3 was prepared by phase inversion method. The physicochemical properties were studied by SEM, FT-IR, XRD, TG and electrochemical methods. The results of FT-IR indicated that the nano-La2O3 was successfully modified with vinyltrimethoxylsilane. The XRD analysis showed that the incorporation of modified nano-La2O3 into the polymer electrolyte membranes could effectively reduce the crystallinity of PVDF-HFP, and the characterizations also suggested that thermal stability and electrochemical stability window could reach to 382°C and 5.1V, respectively; the reciprocal temperature dependence of ionic conductivity followed Vogel-Tamman-Fulcher (VTF) relation, ionic conductivity at room temperature was up to 3.5×10-3S/cm and lithium ions transference number was up to 0.42; the interfacial resistance increased at initial value about353Ω/cm2 and reached a steady value about 559Ω/cm2 after 5d storage at 30°C. The fabricated Li/As-prepared electrolytes/LiCoO2 coin cell showed excellent rate and cycle performances.展开更多
The development of metallic lithium anode is restrained by lithium dendrite growth during cycling.The solid polymer electrolyte with high mechanical strength and lithium ion conductivity could be applied to inhibit li...The development of metallic lithium anode is restrained by lithium dendrite growth during cycling.The solid polymer electrolyte with high mechanical strength and lithium ion conductivity could be applied to inhibit lithium dendrite growth.To prepare the high-performance solid polymer electrolyte,the environment-friendly and cheap bacterial cellulose(BC)is used as filler incorporating with PEO-based electrolyte owing to good mechanical properties and Li salts compatibility.PEO/Li TFSI/BC composite solid polymer electrolytes(CSPE)are prepared easily by aqueous mixing in water.The lithium ion transference number of PEO/Li TFSI/BC CSPE is 0.57,which is higher than PEO/Li TFSI solid polymer electrolyte(SPE)(0.409).The PEO/Li TFSI/BC CSPE exhibits larger tensile strength(4.43 MPa)than PEO/Li TFSI SPE(1.34 MPa).The electrochemical window of composite electrolyte is widened 1.43 V by adding BC.Density functional theory calculations indicate that flex of PEO chains around Li atoms is suppressed,suggesting the enhanced lithium ion conductivity.Frontier molecular orbitals results suggest that an unfavorable intermolecular charge transfer lead to achieve higher potential for BC composite electrolyte.All solid-state Li metal battery with PEO/Li TFSI/BC CSPE delivers longer cycle life for 600 cycles than PEO/Li TFSI SPE battery(50 cycles).Li symmetrical battery using PEO/Li TFSI/BC CSPE could be stable for 1160 h.展开更多
The conductivities of polyethylene oxide (PEO)-based polymer electrolytes (PE) can be improved by the addition of inorganic inert powder. The composite polymer electrolytes (CPE) PEO10LiX (X=4ClO- or 322N(CFSO)-)-Li2T...The conductivities of polyethylene oxide (PEO)-based polymer electrolytes (PE) can be improved by the addition of inorganic inert powder. The composite polymer electrolytes (CPE) PEO10LiX (X=4ClO- or 322N(CFSO)-)-Li2TiO3 were prepared by solution casting with inorganic solid electrolyte Li2TiO3 powder as a filler. Results showed that the conductivities of PEO10LiClO4-3wt% Li2TiO3 and PEO10LiN(CF3SO2)2-10wt% Li2TiO3 at 30 ℃ were 8.6×10-6 and 5.6×10-5 S·cm-1, respectively. The conductivities of CPE increased with the decrease of filler抯 particle size. The ionic conduction mechanism analysis showed that there may be three conduction routes in the CPE, i.e., PEO bulk, polymer-filler interface and Li2TiO3 crystal.展开更多
Rational composite design is highly important for the development of high-performance composite polymer electrolytes(CPEs)for solid-state lithium(Li)metal batteries.In this work,Li closo-borohydride,Li_(2)B_(12)H_(12)...Rational composite design is highly important for the development of high-performance composite polymer electrolytes(CPEs)for solid-state lithium(Li)metal batteries.In this work,Li closo-borohydride,Li_(2)B_(12)H_(12),is introduced to poly(vinylidene fluoride)-Li-bis-(trifluoromethanesulfonyl)imide(PVDF-LiTFSI)with a bound N-methyl pyrrolidone plasticizer to form a novel CPE.This CPE shows superb Li^(+)conduction properties,as evidenced by its conductivity of 1.43×10^(-4) S cm^(-1) and Li^(+)transference number of 0.34 at 25℃.Density functional theory calculations reveal that Li_(2)B_(12)H_(12),which features electron-deficient multicenter bonds,can facilitate the dissociation of LiTFSI and enhance the immobilization of TFSI to improve the Li^(+)conduction properties of the CPE.Moreover,the fabricated CPE exhibits excellent electrochemical,thermal,and mechanical stability.The addition of Li_(2)B_(12)H_(12) can help form a protective layer at the anode/electrolyte interface,thereby preventing unwanted reactions.The above benefits of the fabricated CPE contribute to the high compatibility of the electrode.Symmetric Li cells can be stably cycled at 0.2mA cm^(-2) for over 1200 h,and Li||LiFePO_(4) cells can deliver a reversible specific capacity of 140mAh g^(-1) after 200 cycles at 1C at 25℃ with a capacity retention of 98%.展开更多
Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cyc...Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cycle life;therefore,ASSLBs have been identified as promising candidates for next-generation safe and stable high-energy-storage devices.The design and fabrication of solid-state electrolytes(SSEs)are vital for the future commercialization of ASSLBs.Among various SSEs,solid polymer composite electrolytes(SPCEs)consisting of inorganic nanofillers and polymer matrix have shown great application prospects in the practice of ASSLBs.The incorporation of inorganic nanofillers into the polymer matrix has been considered as a crucial method to achieve high ionic conductivity for SPCE.In this review,the mechanisms of Li+transport variation caused by incorporating inorganic nanofillers into the polymer matrix are discussed in detail.On the basis of the recent progress,the respective contributions of polymer chains,passive ceramic nanofillers,and active ceramic nanofillers in affecting the Li+transport process of SPCE are reviewed systematically.The inherent relationship between the morphological characteristics of inorganic nanofillers and the ionic conductivity of the resultant SPCE is discussed.Finally,the challenges and future perspectives for developing high-performance SPCE are put forward.This review aims to provide possible strategies for the further improvement of ionic conductivity in inorganic nanoscale filler-reinforced SPCE and highlight their inspiration for future research directions.展开更多
Lithium metal is one of the most promising anodes for next-generation batteries due to its high capacity and low reduction potential.However,the notorious Li dendrites can cause the short life span and safety issues,h...Lithium metal is one of the most promising anodes for next-generation batteries due to its high capacity and low reduction potential.However,the notorious Li dendrites can cause the short life span and safety issues,hindering the extensive application of lithium batteries.Herein,Li_(7)La_(3)Zr_(2)O_(12)(LLZO)ceramics are integrated into polyethylene oxide(PEO)to construct a facile polymer/inorganic composite solid-state electrolyte(CSSE)to inhibit the growth of Li dendrites and widen the electrochemical stability window.Given the feasibility of our strategy,the designed PEO-LLZO-LiTFSI composite solid-state electrolyte(PLLCSSE)exhibits an outstanding cycling property of 134.2 mAh g^(-1) after 500 cycles and the Coulombic efficiency of 99.1%after 1000 cycles at 1 C in LiFePO_(4)-Li cell.When cooperated with LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode,the PLL-CSSE renders a capacity retention of 82.4%after 200 cycles at 0.2 C.More importantly,the uniform dispersion of LLZO in PEO matrix is tentative tested via Raman and FT-IR spectra and should be responsible for the improved electrochemical performance.The same conclusion can be drawn from the interface investigation after cycling.This work presents an intriguing solid-state electrolyte with high electrochemical performance,which will boost the development of all-solid-state lithium batteries with high energy density.展开更多
Polyethylene oxide(PEO)-based electrolytes have obvious merits such as strong ability to dissolve salts(e.g.,LiTFSI)and high flexibility,but their applications in solid-state batteries is hindered by the low ion condu...Polyethylene oxide(PEO)-based electrolytes have obvious merits such as strong ability to dissolve salts(e.g.,LiTFSI)and high flexibility,but their applications in solid-state batteries is hindered by the low ion conductance and poor mechanical and thermal properties.Herein,poly(m-phenylene isophthalamide)(PMIA)is employed as a multifunctional additive to improve the overall properties of the PEO-based electrolytes.The hydrogen-bond interactions between PMIA and PEO/TFSI-can effectively prevent the PEO crystallization and meanwhile facilitate the LiTFSI dissociation,and thus greatly improve the ionic conductivity(two times that of the pristine electrolyte at room temperature).With the incorporation of the high-strength PMIA with tough amide-benzene backbones,the PMIA/PEO-LiTFSI composite polymer electrolyte(CPE)membranes also show much higher mechanical strength(2.96 MPa),thermostability(4190℃)and interfacial stability against Li dendrites(468 h at 0.10 mA cm-2)than the pristine electrolyte(0.32 MPa,364℃and short circuit after 246 h).Furthermore,the CPE-based LiFePO4/Li cells exhibit superior cycling stability(137 mAh g^-1 with 93%retention after 100 cycles at 0.5 C)and rate performance(123 mAh g^-1 at 1.0 C).This work provides a novel and effective CPE structure design strategy to achieve comprehensively-upgraded electrolytes for promising solid-state battery applications.展开更多
Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The ...Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The addition of BMImTFSI results in an increase of the ionic conductivity. At high BMImTFSI concentration (BMImTFSI/WPU = 3 in weight ratio), the ionic conductivity reaches 4.27 × 10^-3 S/cm at 30 ℃. These composite polymer electrolytes exhibit good thermal and electrochemical stability, which are high enough to be applied in lithium batteries.展开更多
The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we develop...The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively.展开更多
基金the funding support from the National Key Research and Development Program of China(Grant Number 2021YFB2400300)National Natural Science Foundation of China(Grant Number 21875195,22021001)Fundamental Research Funds for the Central Universities(Grant Number 20720190040)。
文摘With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an essential role in the safety and electrochemical performance of the cells.Composite polymer electrolytes(CPEs)are considered as one of the most promising candidates among all solid-state electrolytes due to their excellent comprehensive performance.In this review,we briefly introduce the components of CPEs,such as the polymer matrix and the species of fillers,as well as the integration of fillers in the polymers.In particular,we focus on the two major obstacles that affect the development of CPEs:the low ionic conductivity of the electrolyte and high interfacial impedance.We provide insight into the factors influencing ionic conductivity,in terms of macroscopic and microscopic aspects,including the aggregated structure of the polymer,ion migration rate and carrier concentration.In addition,we also discuss the electrode-electrolyte interface and summarize methods for improving this interface.It is expected that this review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for improving the compatibility of the electrode-electrolyte interface.
基金This work was supported by the National Natural Science Foundation of China (51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金the Special Grade of the Financial Support from the China Postdoctoral Science Foundation (2020T130469)the Sci-ence and Technology Plans of Tianjin (19PTSYJC00010)the Science&Technol-ogy Development Fund of Tianjin Education Commission for Higher Education (2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.
文摘(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.
基金supported by the State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)the National Natural Science Foundation of China(Nos.21878216,22005215)+1 种基金Hebei Province Innovation Ability Promotion Project(No.20312201D)the National Key Research and Development Program of China(No.2019YFE0118800)。
文摘The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).Li-ion can transfer along the PEO chain or across the layer of TpPa-SO_(3) Li within the nanochannels,resulting in a high Li-ion conductivity of3.01×10^(-4)S/cm at 60℃.When the CPE with 0.75 wt.%TpPa-SO_(3) Li was used in the LiFePO_(4)‖Li solid-state battery,the cell delivered a stable capacity of 125 mA·h/g after 250 cycles at 0.5 C,60℃.In comparison,the cell using the CPE without TpPa-SO_(3) Li exhibited a capacity of only 118 mA·h/g.
文摘PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10、5 Scm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.
基金Project(2011FJ1005)supported by the Major Provincial Science and Technology Program of Hunan Province,ChinaProject(2010qzzd0101)supported by the Central College on the 2010 Operational Costs of Basic Research Program,China
文摘Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical and chemical properties of the modified CPEs were studied by SEM, TG-DSC and electrochemical methods. The results show that the CPE modified with 10% La2O3 (mass fraction) has the best practical applicability, which indicates that the thermal and electrochemical stability can reach over 400 ℃ and 4.5 V, respectively, and temperature dependence of ionic conductivity follows Vogel-Tamman-Fulcher (VTF) relationship and ionic conductivity at room temperature is up to 3.3 mS/cm. The interfacial resistance Ri reaches a stable value about 557 Ω after 6 d storage.
文摘A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH_2C1_2 The ionicconductivity, electrochemical stability, interfacial characteristic and thermal behavior of thecomposite polymer electrolyte were studied by the measurements of AC impedance spectroscopy, linearsweep voltammetry and differential scanning calorimetry (DSC), respectively. The glass transitiontemperature acts as a function of salt concentration, which increases with the LiClO_4 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relationbetween the filled fumed SiO_2 and the lithium salt in the composite polymer electrolyte. Over thesalt concentration range and the measured temperature, the maximum ionic conductivity of thecomposite polymer electrolyte (10^(-4.41) S/cm) appeared at EO/Li=25 (mole ratio) and 30 deg C, andthe beginning oxidative degradation potential versus Li beyond 5 V.
基金supported by the National Natural Science Foundation of China (Nos.52203066,51973157,61904123)the Tianjin Natural Science Foundation (No.18JCQNJC02900)+3 种基金National Innovation and Entrepreneurship Training Program for College students (No.202310058007)Tianjin Municipal College Students’ Innovation and Entrepreneurship Training Program (No.202310058088)Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University
文摘Satisfactory ionic conductivity,excellent mechanical stability,and high-temperature resistance are the prerequisites for the safe application of solid polymer electrolytes(SPEs)in all-solid-state lithium metal batteries(ASSLMBs).In this study,a novel poly(m-phenylene isophthalamide)(PMIA)-core/poly(ethylene oxide)(PEO)-shell nanofiber membrane and the functional Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)ceramic nanopar-ticle are simultaneously introduced into the PEO-based SPEs to prepare composite polymer electrolytes(CPEs).The core PMIA layer of composite nanofibers can greatly improve the mechanical strength and thermal stability of the CPEs,while the shell PEO layer can provide the 3D continuous transport channels for lithium ions.In addition,the introduction of functional LLZTO nanoparticle not only reduces the crys-tallinity of PEO,but also promotes the dissociation of lithium salts and releases more Li^(+)ions through its interaction with the Lewis acid-base of anions,thereby overall improving the transport of lithium ions.Consequently,the optimized CPEs present high ionic conductivity of 1.38×10^(−4)S/cm at 30℃,signifi-cantly improved mechanical strength(8.5 MPa),remarkable thermal stability(without obvious shrinkage at 150℃),and conspicuous Li dendrites blocking ability(>1800 h).The CPEs also both have good com-patibility and cyclic stability with LiFePO_(4)(>2000 cycles)and high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)(>500 cycles)cathodes.In addition,even at low temperature(40℃),the assembled LiFePO4/CPEs/Li bat-tery still can cycle stably.The novel design can provide an effective way to exploit high-performance solid-state electrolytes.
基金supported by the National Natural Science Foundation of China (52102198)the Key R&D and Promotion Projects of Henan Province (212102310016)+1 种基金the Initial Scientific Research Fund of Ph.D.in Anyang Institute of Technology (BSJ2021043)the Initial Scientific Research Fund of Postdoctor in Anyang Institute of Technology (BHJ2022008)。
文摘Composite polymer electrolytes(CPEs)are considered to be the most promising to break through the performance and safety limitations of traditional lithium-ion batteries because of their excellent electrochemical and mechanical properties.Aiming at the performance limitations of the most common polyether matrix such as poly(ethylene oxide)(PEO),a novel poly(cyclocarbonate-ether)polymer matrix was prepared by in-situ thermal curing,the weaker interaction between its C=O bond and Li^(+)can promote the rapid transport of Li^(+).Adding ionic liquid and active filler LLZTO to the matrix can synergistically reduce the crystallinity of matrix and promote the dissociation of lithium salts.In addition,a 3D functional skeleton made of polyacrylonitrile(PAN)and lithium fluoride(LiF)can greatly improve the mechanical strength of polymer matrix after cold pressing,and Li F is also conducive to interface stability.The thickness of the optimal sample(VP6L/CPL)was only 25μm,and its ionic conductivity,lithium ion transference number,and electrochemical stability window were as high as 7.17×10^(-4)S cm^(-1)(25℃),0.54 and 5.4 V,respectively,while the mechanical strength reaches 6.1 MPa,which can fully inhibit the growth of lithium dendrites.The excellent electrochemical performance and mechanical strength enable the assembled Li|VP6L/CPL|Li battery to be continuously charged for over 200 h and cycled stably for more than 2300 h,and Li|VP6L/CPL|LFP battery can be stably cycled for more than 400 and 550 cycles at 1 C(40℃)and 0.5 C(25℃),respectively.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2018YFB0104300)the Beijing Municipal Natural Science Foundation(Grant No.2202027)the China Scholarship Council(No.202006460047).
文摘Solid-state lithium batteries(SSLBs)have been identified as one kind of the most promising energy conversion and storage devices because of their safety,high energy density,and long cycling life.The development of solid-state electrolyte is vital to commercialize SSLBs.Composite polymer electrolyte(CPE),derived by compositing inorganic particles into solid polymer electrolyte has become the most practical species for SSLBs because it inherits the advantages of polymer electrolyte and simultaneously achieves enhanced ionic conductivity and mechanical properties.The characteristics of inorganic particles and their interaction with polymers strongly impact the performance of CPE,improving its ionic conductivity,mechanical properties,thermal and electrochemical stability,as well as interface compatibility with both electrodes.In this review,the effects of particle characteristics including its species,size,proportion,morphology on the ionic conductivity and mechanical properties of CPE are reviewed.Meanwhile,some novel composite strategies are also introduced including surface modification,hybridization,and alignment of particles in polymer matrices,as well as some new preparation methods of CPE.The interactions between particles and other components in CPE including polymer matrices or lithium salt are particularly focused herein to reveal the lithium conductive mechanism.Finally,a perspective on the direction of future CPE development for SSLBs is presented.
基金financially supported by Zhejiang Provincial Natural Science Foundation of China (No. LR20E020002)the National Natural Science Foundation of China (Nos.U20A20253 and 21972127)
文摘Substituting liquid electrolytes with solid elec-trolytes is considered as an important strategy to solve the problem of flammability and explosion for traditional lithium-ion batteries(LIB).However,neither inorganic solid electrolytes(ISE)nor solid polymer electrolytes(SPE)alone can meet the operating requirements for room-temperature(RT)all-solid-state lithium metal batteries(ASSLMB).Here,we report a three-dimensional(3D)nanofiber framework reinforced polyethylene oxide(PEO)-based composite polymer electrolytes(CPE)through con-structing a nanofiber framework combining polyacryloni-trile(PAN)and fast Li-ion conductor Li_(0.33)La_(0.557)TiO_(3)(LLTO)framework by electrospinning method.Mean-while,the PEO electrolyte filled in the pores of the PAN/LLTO nanofiber framework can effectively isolate the direct contact between the chemically active Ti^(4+)in LLTO with lithium metal,thereby avoiding the occurrence of interfacial reactions.Enhanced electrochemical stability makes a wide electrochemical window up to 4.8 V with an ionic conductivity of about 9.87×10^(-5)S·cm^(-1)at RT.Benefiting from the excellent lithium dendrite growth inhibition ability of 3D PAN/LLTO nanofiber framework,especially when the mass of LLTO reaches twice that of the PAN,Li/Li symmetric cell could cycle stably for 1000 h without a short circuit.In addition,under 30℃,the LiFePO_(4)/Li ASSLMB using such CPE delivers large capacities of 156.2 and 140 mAh·g^(-1)at 0.2C and 0.5C,respectively.These results provide a new insight for the development of the next generation of safe,high-perfor-mance ASSLMBs.
基金Project supported by Major Provincial Science and Technology Programs of Hunan (2011FJ1005)Central College on the 2010 Operational Costs of Basic Research Project (2010QZZD0101)
文摘Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3 was prepared by phase inversion method. The physicochemical properties were studied by SEM, FT-IR, XRD, TG and electrochemical methods. The results of FT-IR indicated that the nano-La2O3 was successfully modified with vinyltrimethoxylsilane. The XRD analysis showed that the incorporation of modified nano-La2O3 into the polymer electrolyte membranes could effectively reduce the crystallinity of PVDF-HFP, and the characterizations also suggested that thermal stability and electrochemical stability window could reach to 382°C and 5.1V, respectively; the reciprocal temperature dependence of ionic conductivity followed Vogel-Tamman-Fulcher (VTF) relation, ionic conductivity at room temperature was up to 3.5×10-3S/cm and lithium ions transference number was up to 0.42; the interfacial resistance increased at initial value about353Ω/cm2 and reached a steady value about 559Ω/cm2 after 5d storage at 30°C. The fabricated Li/As-prepared electrolytes/LiCoO2 coin cell showed excellent rate and cycle performances.
基金supported partialy by the National Natural Science Foundation of China(No.51973171)Young Talent Support Plan of Xi’an Jiaotong University and Innovation Capability Support Program of Shaanxi(No.2018PT-28,2019PT-05)
文摘The development of metallic lithium anode is restrained by lithium dendrite growth during cycling.The solid polymer electrolyte with high mechanical strength and lithium ion conductivity could be applied to inhibit lithium dendrite growth.To prepare the high-performance solid polymer electrolyte,the environment-friendly and cheap bacterial cellulose(BC)is used as filler incorporating with PEO-based electrolyte owing to good mechanical properties and Li salts compatibility.PEO/Li TFSI/BC composite solid polymer electrolytes(CSPE)are prepared easily by aqueous mixing in water.The lithium ion transference number of PEO/Li TFSI/BC CSPE is 0.57,which is higher than PEO/Li TFSI solid polymer electrolyte(SPE)(0.409).The PEO/Li TFSI/BC CSPE exhibits larger tensile strength(4.43 MPa)than PEO/Li TFSI SPE(1.34 MPa).The electrochemical window of composite electrolyte is widened 1.43 V by adding BC.Density functional theory calculations indicate that flex of PEO chains around Li atoms is suppressed,suggesting the enhanced lithium ion conductivity.Frontier molecular orbitals results suggest that an unfavorable intermolecular charge transfer lead to achieve higher potential for BC composite electrolyte.All solid-state Li metal battery with PEO/Li TFSI/BC CSPE delivers longer cycle life for 600 cycles than PEO/Li TFSI SPE battery(50 cycles).Li symmetrical battery using PEO/Li TFSI/BC CSPE could be stable for 1160 h.
文摘The conductivities of polyethylene oxide (PEO)-based polymer electrolytes (PE) can be improved by the addition of inorganic inert powder. The composite polymer electrolytes (CPE) PEO10LiX (X=4ClO- or 322N(CFSO)-)-Li2TiO3 were prepared by solution casting with inorganic solid electrolyte Li2TiO3 powder as a filler. Results showed that the conductivities of PEO10LiClO4-3wt% Li2TiO3 and PEO10LiN(CF3SO2)2-10wt% Li2TiO3 at 30 ℃ were 8.6×10-6 and 5.6×10-5 S·cm-1, respectively. The conductivities of CPE increased with the decrease of filler抯 particle size. The ionic conduction mechanism analysis showed that there may be three conduction routes in the CPE, i.e., PEO bulk, polymer-filler interface and Li2TiO3 crystal.
基金supported by the National Natural Science Foundation of China(51971146 and 51971147)the Major Program for the Scientific Research Innovation Plan of Shanghai Education Commission(2019-01-07-00-07-E00015)+3 种基金Shanghai Outstanding Academic Leaders PlanGuangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology,201017-K)Shanghai Rising-Star Program(20QA1407100)the General Program of Natural Science Foundation of Shanghai(20ZR1438400).
文摘Rational composite design is highly important for the development of high-performance composite polymer electrolytes(CPEs)for solid-state lithium(Li)metal batteries.In this work,Li closo-borohydride,Li_(2)B_(12)H_(12),is introduced to poly(vinylidene fluoride)-Li-bis-(trifluoromethanesulfonyl)imide(PVDF-LiTFSI)with a bound N-methyl pyrrolidone plasticizer to form a novel CPE.This CPE shows superb Li^(+)conduction properties,as evidenced by its conductivity of 1.43×10^(-4) S cm^(-1) and Li^(+)transference number of 0.34 at 25℃.Density functional theory calculations reveal that Li_(2)B_(12)H_(12),which features electron-deficient multicenter bonds,can facilitate the dissociation of LiTFSI and enhance the immobilization of TFSI to improve the Li^(+)conduction properties of the CPE.Moreover,the fabricated CPE exhibits excellent electrochemical,thermal,and mechanical stability.The addition of Li_(2)B_(12)H_(12) can help form a protective layer at the anode/electrolyte interface,thereby preventing unwanted reactions.The above benefits of the fabricated CPE contribute to the high compatibility of the electrode.Symmetric Li cells can be stably cycled at 0.2mA cm^(-2) for over 1200 h,and Li||LiFePO_(4) cells can deliver a reversible specific capacity of 140mAh g^(-1) after 200 cycles at 1C at 25℃ with a capacity retention of 98%.
基金the National Natural Science Foundation of China(Grant No.21673051)the Department of Science and Technology of Guangdong Province,China(No.2019A050510043).
文摘Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cycle life;therefore,ASSLBs have been identified as promising candidates for next-generation safe and stable high-energy-storage devices.The design and fabrication of solid-state electrolytes(SSEs)are vital for the future commercialization of ASSLBs.Among various SSEs,solid polymer composite electrolytes(SPCEs)consisting of inorganic nanofillers and polymer matrix have shown great application prospects in the practice of ASSLBs.The incorporation of inorganic nanofillers into the polymer matrix has been considered as a crucial method to achieve high ionic conductivity for SPCE.In this review,the mechanisms of Li+transport variation caused by incorporating inorganic nanofillers into the polymer matrix are discussed in detail.On the basis of the recent progress,the respective contributions of polymer chains,passive ceramic nanofillers,and active ceramic nanofillers in affecting the Li+transport process of SPCE are reviewed systematically.The inherent relationship between the morphological characteristics of inorganic nanofillers and the ionic conductivity of the resultant SPCE is discussed.Finally,the challenges and future perspectives for developing high-performance SPCE are put forward.This review aims to provide possible strategies for the further improvement of ionic conductivity in inorganic nanoscale filler-reinforced SPCE and highlight their inspiration for future research directions.
基金financially supported partly by the National Key Research and Development Program of China(2018YFE0111600)the Tianjin Sci.&Tech.Program(17YFZCGX00560)the Young Elite Scientists Sponsorship Program by Tianjin(TJSQNTJ-2017-05)。
文摘Lithium metal is one of the most promising anodes for next-generation batteries due to its high capacity and low reduction potential.However,the notorious Li dendrites can cause the short life span and safety issues,hindering the extensive application of lithium batteries.Herein,Li_(7)La_(3)Zr_(2)O_(12)(LLZO)ceramics are integrated into polyethylene oxide(PEO)to construct a facile polymer/inorganic composite solid-state electrolyte(CSSE)to inhibit the growth of Li dendrites and widen the electrochemical stability window.Given the feasibility of our strategy,the designed PEO-LLZO-LiTFSI composite solid-state electrolyte(PLLCSSE)exhibits an outstanding cycling property of 134.2 mAh g^(-1) after 500 cycles and the Coulombic efficiency of 99.1%after 1000 cycles at 1 C in LiFePO_(4)-Li cell.When cooperated with LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode,the PLL-CSSE renders a capacity retention of 82.4%after 200 cycles at 0.2 C.More importantly,the uniform dispersion of LLZO in PEO matrix is tentative tested via Raman and FT-IR spectra and should be responsible for the improved electrochemical performance.The same conclusion can be drawn from the interface investigation after cycling.This work presents an intriguing solid-state electrolyte with high electrochemical performance,which will boost the development of all-solid-state lithium batteries with high energy density.
基金supported partially by Natural Science Foundation of Beijing Municipality(L172036)Joint Funds of the Equipment Pre-Research and Ministry of Education(6141A020225)+3 种基金Par-Eu Scholars Program,Science and Technology Beijing 100 Leading Talent Training ProjectChina Postdoctoral Science Foundation(2018M631419)Fundamental Research Funds for Central Universities(2017ZZD02,2019QN001)NCEPU“Double First-Class”Graduate Talent Cultivation Program。
文摘Polyethylene oxide(PEO)-based electrolytes have obvious merits such as strong ability to dissolve salts(e.g.,LiTFSI)and high flexibility,but their applications in solid-state batteries is hindered by the low ion conductance and poor mechanical and thermal properties.Herein,poly(m-phenylene isophthalamide)(PMIA)is employed as a multifunctional additive to improve the overall properties of the PEO-based electrolytes.The hydrogen-bond interactions between PMIA and PEO/TFSI-can effectively prevent the PEO crystallization and meanwhile facilitate the LiTFSI dissociation,and thus greatly improve the ionic conductivity(two times that of the pristine electrolyte at room temperature).With the incorporation of the high-strength PMIA with tough amide-benzene backbones,the PMIA/PEO-LiTFSI composite polymer electrolyte(CPE)membranes also show much higher mechanical strength(2.96 MPa),thermostability(4190℃)and interfacial stability against Li dendrites(468 h at 0.10 mA cm-2)than the pristine electrolyte(0.32 MPa,364℃and short circuit after 246 h).Furthermore,the CPE-based LiFePO4/Li cells exhibit superior cycling stability(137 mAh g^-1 with 93%retention after 100 cycles at 0.5 C)and rate performance(123 mAh g^-1 at 1.0 C).This work provides a novel and effective CPE structure design strategy to achieve comprehensively-upgraded electrolytes for promising solid-state battery applications.
基金financially supported by the National 863 Program(No.2007AA03Z226)the National Key Program for Basic Research of China(No.2002CB211800 and 2009CB220100).
文摘Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The addition of BMImTFSI results in an increase of the ionic conductivity. At high BMImTFSI concentration (BMImTFSI/WPU = 3 in weight ratio), the ionic conductivity reaches 4.27 × 10^-3 S/cm at 30 ℃. These composite polymer electrolytes exhibit good thermal and electrochemical stability, which are high enough to be applied in lithium batteries.
基金the National Key Research and Development Program of China (No. 2020YFC1909604)the Shenzhen Key Projects of Technological Research (JSGG2020092514 5800001)。
文摘The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively.