Using the hydrogen-bonding interaction between graphene oxide(GO) and sulfonated polyethersulfone (SPES), we constructed the multilayer structure of GO and SPES on the polyester tiber mats via layer-by-layer self-...Using the hydrogen-bonding interaction between graphene oxide(GO) and sulfonated polyethersulfone (SPES), we constructed the multilayer structure of GO and SPES on the polyester tiber mats via layer-by-layer self-assembly. In each self-assembled layer, sulfonic acid groups are arranged along the a^s of fiber, which provides the long-range proton transmission channels, promoting the rapidly proton conduction. The performances of the composite membranes based on SPES and multilayer assembled polyester fiber mats were studied. The results show that the proton conductivity of composite membranes increases with the increasing assembly layers. At the same time, the mechanical properties and methanol-resistance of the composite membranes were obviously improved.展开更多
Due to the designability of their proton transport channels,high-performance long-lasting composite proton exchange membranes(PEMs)are currently the subject of extensive research.However,the compatibility and channel ...Due to the designability of their proton transport channels,high-performance long-lasting composite proton exchange membranes(PEMs)are currently the subject of extensive research.However,the compatibility and channel order of the internal components of the composite membranes are still challenging.In this work,hollow polypyrrole(PPy)nanotube structures were obtained to provide a nitrogen source and to act as a skeleton to confine and separate cobalt nanoparticles on the surface of PPy nanotubes.Finally,zeolitic imidazolate framework material-67(ZIF-67)was attached to the surface.By using this method,PPy@ZIF-67 filler can minimize the particle size and inhibit Co^(2+)ions from aggregating,thus constructing a reasonably distributed transport channel and improving the proton transport capacity.As a result,the synthesized polymer nanotubes loaded metal-organic framework(MOF)nanofiber network can enhance the physicochemical properties and stability of the membrane by providing a more extensive interfacial interaction.In addition,the composite membrane has excellent ionic conductivity and power density,reaching 233.7 mS cm^(–1) and 837 mW cm^(–2) at 80℃ and 100%humidity.It indicates that the nanofibrous MOF structure not only improves the compatibility with the substrate but also provides sufficient leap points for proton transport via the interfacial conduction pathway between the PPy@ZIF-67 filler and the substrate,thus allowing the resulting composite membrane to facilitate proton transfer via the Vehicle and Grotthuss mechanisms synergistically.展开更多
基金Supported by the National Natural Science Foundation of China(No.21574017).
文摘Using the hydrogen-bonding interaction between graphene oxide(GO) and sulfonated polyethersulfone (SPES), we constructed the multilayer structure of GO and SPES on the polyester tiber mats via layer-by-layer self-assembly. In each self-assembled layer, sulfonic acid groups are arranged along the a^s of fiber, which provides the long-range proton transmission channels, promoting the rapidly proton conduction. The performances of the composite membranes based on SPES and multilayer assembled polyester fiber mats were studied. The results show that the proton conductivity of composite membranes increases with the increasing assembly layers. At the same time, the mechanical properties and methanol-resistance of the composite membranes were obviously improved.
基金The author would like to thank the National Key R&D Program of China(Project No.2021YFE0104700).
文摘Due to the designability of their proton transport channels,high-performance long-lasting composite proton exchange membranes(PEMs)are currently the subject of extensive research.However,the compatibility and channel order of the internal components of the composite membranes are still challenging.In this work,hollow polypyrrole(PPy)nanotube structures were obtained to provide a nitrogen source and to act as a skeleton to confine and separate cobalt nanoparticles on the surface of PPy nanotubes.Finally,zeolitic imidazolate framework material-67(ZIF-67)was attached to the surface.By using this method,PPy@ZIF-67 filler can minimize the particle size and inhibit Co^(2+)ions from aggregating,thus constructing a reasonably distributed transport channel and improving the proton transport capacity.As a result,the synthesized polymer nanotubes loaded metal-organic framework(MOF)nanofiber network can enhance the physicochemical properties and stability of the membrane by providing a more extensive interfacial interaction.In addition,the composite membrane has excellent ionic conductivity and power density,reaching 233.7 mS cm^(–1) and 837 mW cm^(–2) at 80℃ and 100%humidity.It indicates that the nanofibrous MOF structure not only improves the compatibility with the substrate but also provides sufficient leap points for proton transport via the interfacial conduction pathway between the PPy@ZIF-67 filler and the substrate,thus allowing the resulting composite membrane to facilitate proton transfer via the Vehicle and Grotthuss mechanisms synergistically.