The solar temperature field of a large three-span continuous bridge with steel-concrete composite box girder and variable cross-section is measured to verify a calculation method for the temperature field of steel-con...The solar temperature field of a large three-span continuous bridge with steel-concrete composite box girder and variable cross-section is measured to verify a calculation method for the temperature field of steel-concrete composite beams. The test results show that the temperature of an external steel web- plate is higher than that of an internal web-plate due to the difference in solar radiation. Air temperature inside the box matches the average temperature of the whole steel box. Based on actual measurements, a transient thermal analysis with multiple boundary conditions is also carried out by a software program ANSYS. Convective boundary situation and states of solar radiation on steel web plates in different situations are determined in the analysis. The feature of the temperature field is preliminarily achieved through a comparative study between the actual measurement and the finite element analysis. The computed results are in good consistence with the actual measurement results, with the maximum difference within 2 ℃. This indicates that the theoretical calculation method is reliable and it provides a foundation for further research on temperature field distribution in the steel-concrete composite box girder.展开更多
The radiation shielding characteristics of 50wt% WO3/E44 epoxy composite in various gamma energies from 80 keV to 1.33 MeV are investigated via the MCNP code. Thus two scales are considered for WOa filler particles: ...The radiation shielding characteristics of 50wt% WO3/E44 epoxy composite in various gamma energies from 80 keV to 1.33 MeV are investigated via the MCNP code. Thus two scales are considered for WOa filler particles: micro and nano with sizes of i #m and 5Onto, respectively. The simulation results show that W03 nano particles exhibit a larger increase in linear attenuation coefficient in comparison with micro size particles. Finally, validation of simulation results with the published experimental data shows a good agreement.展开更多
Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a compos...Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a composite laminate thin plate whose sides are measured with the thickness from 0.1-1 μm. Its middle ply is a ferroelectric thin film. Its top surface is covered with a gold or platinum infrared absorber, while the bottom surface is deposited with platinum or lanthanum-nickel. Meanwhile both surfaces are a pair of electrodes. The top surface receives infrared radiation pulses successively. For the very tiny micro bolometer pixel, it is assumed that the infrared radiation is uniformly distributed on the plate. Furthermore, as the ratio of the side length to the thickness of the plate is dramatically large, it is assumed that heat transfer only takes place across the thickness of the plate. The thermal-electric-mechanical coupling governing equations are solved in a form of Fourier series. Results of the displacement, temperature variation and electric output signals of the micro bolometer pixel structure under infrared radiation are obtained, analyzed and compared with experimental data.展开更多
文摘The solar temperature field of a large three-span continuous bridge with steel-concrete composite box girder and variable cross-section is measured to verify a calculation method for the temperature field of steel-concrete composite beams. The test results show that the temperature of an external steel web- plate is higher than that of an internal web-plate due to the difference in solar radiation. Air temperature inside the box matches the average temperature of the whole steel box. Based on actual measurements, a transient thermal analysis with multiple boundary conditions is also carried out by a software program ANSYS. Convective boundary situation and states of solar radiation on steel web plates in different situations are determined in the analysis. The feature of the temperature field is preliminarily achieved through a comparative study between the actual measurement and the finite element analysis. The computed results are in good consistence with the actual measurement results, with the maximum difference within 2 ℃. This indicates that the theoretical calculation method is reliable and it provides a foundation for further research on temperature field distribution in the steel-concrete composite box girder.
文摘The radiation shielding characteristics of 50wt% WO3/E44 epoxy composite in various gamma energies from 80 keV to 1.33 MeV are investigated via the MCNP code. Thus two scales are considered for WOa filler particles: micro and nano with sizes of i #m and 5Onto, respectively. The simulation results show that W03 nano particles exhibit a larger increase in linear attenuation coefficient in comparison with micro size particles. Finally, validation of simulation results with the published experimental data shows a good agreement.
基金supported by the Ph.D. Programs Foundation of Ministry of Education of China (No.20050247004)
文摘Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a composite laminate thin plate whose sides are measured with the thickness from 0.1-1 μm. Its middle ply is a ferroelectric thin film. Its top surface is covered with a gold or platinum infrared absorber, while the bottom surface is deposited with platinum or lanthanum-nickel. Meanwhile both surfaces are a pair of electrodes. The top surface receives infrared radiation pulses successively. For the very tiny micro bolometer pixel, it is assumed that the infrared radiation is uniformly distributed on the plate. Furthermore, as the ratio of the side length to the thickness of the plate is dramatically large, it is assumed that heat transfer only takes place across the thickness of the plate. The thermal-electric-mechanical coupling governing equations are solved in a form of Fourier series. Results of the displacement, temperature variation and electric output signals of the micro bolometer pixel structure under infrared radiation are obtained, analyzed and compared with experimental data.