期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Research and Application of Ecological Outdoor Ground Structure with Composite Water Storage and Drainage Function
1
作者 Peng ZHONG Yuqi FAN Zhenggen FAN 《Asian Agricultural Research》 2023年第10期6-9,共4页
In order to solve the problems of surface runoff increase,water accumulation in rainy days and urban heat island effect,an ecological outdoor ground structure with composite water storage and drainage functions was st... In order to solve the problems of surface runoff increase,water accumulation in rainy days and urban heat island effect,an ecological outdoor ground structure with composite water storage and drainage functions was studied and applied in this paper:Through the comprehensive design of road ground,road inspection well,garden inspection well and drainage pipe network,it can quickly store and drain ground water,alleviate the urban heat island effect,realize plant infiltration irrigation,and achieve the purpose of saving water and energy. 展开更多
关键词 composite water storage and drainage Waterlogging prevention Ecological type Outdoor ground
下载PDF
Fabrication of Al_2O_3-NaCl Composite Heat Storage Materials by One-step Synthesis Method 被引量:5
2
作者 朱教群 李儒光 +2 位作者 ZHOU Weibin ZHANG Hongguang CHENG Xiaomin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期950-954,共5页
Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composi... Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering. 展开更多
关键词 one-step synthesis composite materials heat storage
下载PDF
Phase Structure and Electrochemical Properties of RE-Mg Based Composite Hydrogen Storage Alloys 被引量:1
3
作者 韩树民 刘宝忠 +3 位作者 张忠 朱惜林 王晓铁 荆天辅 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第6期878-881,共4页
A new type of AB_5-x%LaMg_3(x=2, 3, 4, 5, 6, 7, 8)composite hydrogen storage alloys were prepared by sintering the powder mixtures of a commercial AB_5 alloy and LaMg_3 alloy. The phase structure and electrochemical c... A new type of AB_5-x%LaMg_3(x=2, 3, 4, 5, 6, 7, 8)composite hydrogen storage alloys were prepared by sintering the powder mixtures of a commercial AB_5 alloy and LaMg_3 alloy. The phase structure and electrochemical characteristics of the composite hydrogen storage alloys were also studied. It is shown that AB_(5)-x%LaMg_3(x=2, 3, 4, 5, 6, 7, 8)composites have mult; phase structure. The matrix phase has CaCu_5 structure, the second phase is LaNi_3 phase. The maximum discharge capacity, discharge capacity at low temperature and HRD of AB_5 alloy electrodes are greatly improved after the composite. The maximum discharge capacity of the composite electrodes increases from 325 mAh·g^(-1) for x=0 to 358 mAh·g^(-1) for x=5, and the HRD of the composites for x=5 at the current density of 1200 mA·g^(-1)30% of that of the alloy at 60 mA·g^(-1). The discharge capacity of AB_5-x%LaMg_3 composite alloy electrode at 233 K is up to 174 mAh·g^(-1). The improvement of the electrochemical characteristics of the composite electrodes seems to be related with formation of the LaNi_3 second phase. 展开更多
关键词 RE-Mg composite hydrogen storage materials electrochemical properties SINTERING nickel/metal-hydride battery rare earths
下载PDF
Phase Structure and Cycle Stabilities of Mg_2Ni/Mm_(0.3)Ml_(0.7)Ni_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3) Composite Hydrogen Storage Alloys Prepared by Two-step re-melting 被引量:1
4
作者 黄丽宏 刘向东 +1 位作者 闫淑芳 车广东 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期139-142,共4页
Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to ... Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to improve the capacity and cycle performances of hydrogen-storage alloy electrodes, Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3-x%Mg2Ni(x=0, 5, 10, 30) composite hydrogen storage alloys prepared by two-step re-melting were investigated in this work. The influences of Mg2Ni content on the cycle stabilities were analyzed by electrochemical methods. It was observed by XRD that the main phase of all the alloys is LaNi5 and the crystal lattice parameters of LaNi5 are changed with the increasing of x value, i.e, a-axis and unit cell volume decrease and c-axis decreases nonlinearly. The c-axis of alloy with x=5 is larger than the others. With the increasing of x value, capacity retentions of the composite hydrogen storage alloys rise from 66.21% while x=0 to 82.04% while x=10, but the capacity retention of the composite alloy with 30% Mg2Ni declines because of its decreasing axial ratio. More over, the composite alloy with 5% Mg2Ni shows the best cycle stability and higher discharge capacity, and it is an appropriate candidate for battery materials. 展开更多
关键词 composite hydrogen storage alloys phase structure cycle stabilities capacity retention
下载PDF
Microstructure and Characterization of Capric-stearic Acid/Modified Expanded Vermiculite Thermal Storage Composites 被引量:1
5
作者 刘凤利 朱教群 +4 位作者 LIU Junhua MA Baoguo ZHOU Weibing LI Ruguang QIN Weigao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期296-304,共9页
In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface... In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface modifier, and organic EV(OEV) with hydrophobicity and higher adsorption capacity for fatty acid was obtained. A novel capric-stearic acid eutectic(CA-SA)/OEV FS-PCM with high thermal storage capacity was then developed. OEV and CA-SA/OEV were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC), thermal gravimetry(TG), and thermal cycling test. Results showed that OEV has obvious hydrophobicity and a higher adsorption capacity for fatty acid. Its adsorption ratio has increased by 48.71% compared with that of EV. CA-SA/OEV possesses high thermal storage density(112.52 J/g), suitable melting temperature(20.49 ℃), good chemical compatibility, excellent thermal stability and reliability, indicating great application potential for building energy efficiency. Moreover, organic modification of inorganic matrix may offer novel options for improving its adsorption capacity for organic PCMs and increasing heat storage capacity of corresponding FS-PCMs. 展开更多
关键词 organic expanded vermiculite capric-stearic acid eutectic form-stable composite PCMs thermal energy storage building envelope
下载PDF
Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene
6
作者 周详 陈骥 +1 位作者 顾林 缪灵 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第2期99-101,共3页
We study the stability and performance of Li absorption on the composite structure (B80 C72) of boron fullerene and graphene by first-principles calculations. Our results show that the Li storage capacity of the com... We study the stability and performance of Li absorption on the composite structure (B80 C72) of boron fullerene and graphene by first-principles calculations. Our results show that the Li storage capacity of the composite structure is estimated to be at least Li54B80C72, which is steady with improved dispersibility and electronic conductivity. The composite structure could have the potential application as the anode material of Li-ion batteries with high Li storage capacity and great mechanical property. 展开更多
关键词 Li storage Performance for the composite Structure Of Graphene and Boron Fullerene
下载PDF
Structural energy storage composites based on modified carbon fiber electrode with metal-organic frame enhancing layered double hydroxide
7
作者 Jinrui Ye Zhongbao Wang +2 位作者 Qin Lei Lei Sun Jinfeng Gu 《Nano Research》 SCIE EI CSCD 2024年第3期1552-1563,共12页
Structural energy storage composites present advantages in simultaneously achieving structural strength and electrochemical properties.Adoption of carbon fiber electrodes and resin structural electrolytes in energy st... Structural energy storage composites present advantages in simultaneously achieving structural strength and electrochemical properties.Adoption of carbon fiber electrodes and resin structural electrolytes in energy storage composite poses challenges in maintaining good mechanical and electrochemical properties at reasonable cost and effort.Here,we report a simple method to fabricate structural supercapacitor using carbon fiber electrodes(modified by Ni-layered double hydroxide(Ni-LDH)and in-situ growth of Co-metal-organic framework(Co-MOF)in a two-step process denoted as Co-MOF/Ni-LDH@CF)and bicontinuous-phase epoxy resin-based structural electrolyte.Co-MOF/Ni-LDH@CF as electrode material exhibits improved specific capacity(42.45 F·g^(-1))and cycle performance(93.3%capacity retention after 1000 cycles)in a three-electrode system.The bicontinuous-phase epoxy resin-based structural electrolyte exhibits an ionic conductivity of 3.27×10^(-4) S·cm^(-1).The fabricated Co-MOF/Ni-LDH@CF/SPE-50 structural supercapacitor has an energy density of 3.21 Wh·kg^(-1) at a power density of 42.25 W·kg^(-1),whilst maintaining tensile strength and modulus of 334.6 MPa and 25.2 GPa.These results show practical potential of employing modified commercial carbon fiber electrodes and epoxy resin-based structural electrolytes in structural energy storage applications. 展开更多
关键词 carbon fiber electrode structural electrolyte structural energy storage composites SUPERCAPACITOR
原文传递
Preparation and hydrogen sorption properties of Mg-Cu-Y-H systems 被引量:1
8
作者 LI Zhinian LIU Xiaopeng HUANG Zuo JIANG Lijun WANG Shumao 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期89-94,共6页
Mg-xwt.%CuY (x=15, 20, 25) composites were successfully prepared by reactive mechanical alloying (RMA). X-ray diffraction (XRD) measurement shows that main phases of the as milled composites are MgH2 and Mg2Cu, and th... Mg-xwt.%CuY (x=15, 20, 25) composites were successfully prepared by reactive mechanical alloying (RMA). X-ray diffraction (XRD) measurement shows that main phases of the as milled composites are MgH2 and Mg2Cu, and they converted into Mg and MgCu2 after dehydrogenation, respectively. Pressure-Composition-Isotherm (PCI) test shows that the composites exhibit double pressure plateau at each isothermal desorption process. The hydrogen absorption and desorption kinetics of the composites become worse with increasing x content, indicating that Mg-Cu phase has a negative effect on the hydrogen sorption properties of the composites. It is supposed that the good hydrogen sorption properties of the composites attribute to the catalyst effect of yttrium hydride distributed in Mg substrate and the particles size reduction and crystal defects formed by RMA. 展开更多
关键词 hydrogen storage composite mechanical alloying Mg-Cu-Y-H system MAGNESIUM
下载PDF
Hydrogen sorption properties of Mg-20wt.%Fe_(23)Y_8 composite prepared by reactive mechanical alloying 被引量:1
9
作者 LI Zhinian LIU Xiaopeng HUANG Zuo JIANG Lijun WANG Shumao 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期247-251,共5页
Mg-20wt.%Fe23Y8 composite was successfully prepared by reactive mechanical alloying (RMA). X-ray diffraction (XRD) measurement shows that the main phases of composite are MgH2 and Mg2FeH6. The composite exhibits excel... Mg-20wt.%Fe23Y8 composite was successfully prepared by reactive mechanical alloying (RMA). X-ray diffraction (XRD) measurement shows that the main phases of composite are MgH2 and Mg2FeH6. The composite exhibits excellent hydrogen abs/desorption properties and can absorb 4.36wt.% and 5.72wt.% hydrogen at 473 and 573 K in 10 min under 3.0 MPa hydrogen pressure, respectively. The composite can desorb 5.27wt.% hydrogen at 573 K in 30 min under 0.02 MPa hydrogen pressure. Compared with the pure MgH2, the hydrogen desorption temperature of Mg-20wt.% Fe23Y8 composite is decreased about 40 ℃. It is supposed that both the catalyst effect of Fe-Y distributed in Mg substrate and the crystal defects play the main role in improving hydrogen sorption properties of Mg-20wt.% Fe23Y8 composite. 展开更多
关键词 hydrogen storage composite MAGNESIUM mechanical alloying P-C-T and Mg2FeH6
下载PDF
Synthesis,Structural Characterization and Hydrogen Storage of Nickel-containing Mesoporous MCM-48 by Electroless Plating 被引量:1
10
作者 张光旭 REN Xiaocong +1 位作者 FANG Yuan CHEN Jian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第1期64-67,共4页
Hydrogen is a promising fuel for it is clean,highly abundant and non-toxic,but on-board storage of hydrogen is still a challenge.So it is imperative to have an efficient method of hydrogen storage.The mesoporous MCM-4... Hydrogen is a promising fuel for it is clean,highly abundant and non-toxic,but on-board storage of hydrogen is still a challenge.So it is imperative to have an efficient method of hydrogen storage.The mesoporous MCM-48 especially the nickel-containing MCM-48 has great potential in hydrogen storage.MCM-48 was prepared by hydrothermal synthesis.Then electroless plating technology was used to deposit Ni on the surface of MCM-48 under ultrasonic environment.Powder X-ray diffraction(XRD),transmission electron microscopy(TEM),and N2 adsorption-desorption were employed to investigate the pore structure properties.The results showed that all the samples had Ia3 d cubic structure and pore channels were highly ordered.Hydrogen adsorption studies showed that the MCM-48 after nickel plating adsorbed nearly twice the amount of hydrogen than pure MCM-48 at 2.0 MPa,263 K.So we believe that a small amount of Ni can improve the capacity of hydrogen adsorption of MCM-48 efficiently. 展开更多
关键词 MCM-48 electroless Ni-plating ultrasonic method metallic composites hydrogen storage
下载PDF
Hydrogenation/Dehydrogenation Performances of the MgH_2-WS_2 Composites
11
作者 王家盛 ZHANG Wei +2 位作者 CHENG Ying KE Dandan 韩树民 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期670-673,共4页
The hydrogenation/dehydrogenation kinetics and thermodynamic behaviors of the MgH2- WS2 composites were investigated. The TPD (Temperature-Programmed-Desorption) curves showed that the onset dehydrogenation temperat... The hydrogenation/dehydrogenation kinetics and thermodynamic behaviors of the MgH2- WS2 composites were investigated. The TPD (Temperature-Programmed-Desorption) curves showed that the onset dehydrogenation temperature of the MgH2 + 20wt% WS2 composite was 615 K, 58 K lower than that of the pristine MgH2. The kinetic measurements showed that within 21 rain, the MgH2 + 20wt% WS2 composite could absorb 2.818wt% at 423 K, and release 4.244 wt% of hydrogen at 623 K, while the hydriding/ dehydriding capacity of MgH2 reached only 0.979wt% and 2.319wt% respectively under identical conditions. The improvement of hydrogenation/dehydrogenation performances for the composite was attributed to the co- catalytic effect between the new phases W and MgS which formed durin~ the ball-milliw, ~rocess. 展开更多
关键词 MgH2 WS2 hydrogen storage composite co-catalytic
下载PDF
A Markov Model for Subway Composite Energy Prediction
12
作者 Xiaokan Wang Qiong Wang +1 位作者 Liang Shuang Chao Chen 《Computer Systems Science & Engineering》 SCIE EI 2021年第11期237-250,共14页
Electric vehicles such as trains must match their electric power supply and demand,such as by using a composite energy storage system composed of lithium batteries and supercapacitors.In this paper,a predictive contro... Electric vehicles such as trains must match their electric power supply and demand,such as by using a composite energy storage system composed of lithium batteries and supercapacitors.In this paper,a predictive control strategy based on a Markov model is proposed for a composite energy storage system in an urban rail train.The model predicts the state of the train and a dynamic programming algorithm is employed to solve the optimization problem in a forecast time domain.Real-time online control of power allocation in the composite energy storage system can be achieved.Using standard train operating conditions for simulation,we found that the proposed control strategy achieves a suitable match between power supply and demand when the train is running.Compared with traditional predictive control systems,energy efficiency 10.5%higher.This system provides good stability and robustness,satisfactory speed tracking performance and control comfort,and significant suppression of disturbances,making it feasible for practical applications. 展开更多
关键词 Markov model predictive control composite energy storage urban rail train
下载PDF
Microstructure and Hydrogen Absorption Pro-perties of Mg/MmNi_(5-x) (CoAlMn)_x Composite Prepared by Mechanical Alloying
13
作者 Zhu Wenhui Zhu Min +2 位作者 Che Xiaozhou Li Long Li Zuxin(Department of Mechano-ElectronicEngineering, South China University of Technology,Guangzhou 510641, China ) 《Journal of Rare Earths》 SCIE EI CAS CSCD 1999年第4期262-262,共1页
The microstructure ofthe Mg/MmNi5-x (CoAlMn )x composite hydrogen storage material preparedby the method of mechanical alloyingwas characterized by X-ray diffraction, SEM and particle size distribution analysis. By me... The microstructure ofthe Mg/MmNi5-x (CoAlMn )x composite hydrogen storage material preparedby the method of mechanical alloyingwas characterized by X-ray diffraction, SEM and particle size distribution analysis. By measuring PCTcurves, the hydrogen absorption properties of the composite was evaluated.The results show that nanocrystallinecomposite structure can be obtainedunder adequate ball milling condition. The reactive activation and hydrogen absorption capacity are improved compared with the sole MmNi5-x(CoAlMn)x alloy. The effect ofmagnesium on the microstructure andhydrogen absorption properties of thecomposite were also evaluated. 展开更多
关键词 Rare earths Mechanical alloying Hydrogen storage alloys Nanocrystalline composite MmNi_(5-x)(CoAlMn)_x/Mg
下载PDF
Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage 被引量:20
14
作者 Zhiwei Ge Feng Ye +3 位作者 Hui Cao Guanghui Leng Yue Qin Yulong Ding 《Particuology》 SCIE EI CAS CSCD 2014年第4期77-81,共5页
This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and... This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and a high thermal conductivity material. The ceramic material forms a microstructural skeleton for encapsulation of the PCM and structural stability of the composites; the high thermal conductivity material enhances the overall thermal conductivity of the composites. Using a eutectic salt of lithium and sodium carbonates as the PCM, magnesium oxide as the ceramic skeleton, and either graphite flakes or carbon nanotubes as the thermal conductivity enhancer, we produced composites with good physical and chemical stability and high thermal conductivity. We found that the wettability of the molten salt on the ceramic and carbon materials significantly affects the microstructure of the composites. 展开更多
关键词 Thermal energy storage composite materials Microstructure Thermal conductivity Phase change material
原文传递
Preparation and photochromic properties of pyrazolones/polyvinyl alcohol composite films
15
作者 Ji-Xi Guo Ming-Xi Guo +1 位作者 Dian-Zeng Jia Yin-Hua Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第2期280-284,共5页
Novel photochromic composite films have been successfully fabricated by dispersing pyrazolone derivative:1,3-Diphenyl-4-(3-chlorobenzal)-5-hydroxypyrazole 4-phenylsemicarbazone(la) into hydrosol of polyvinyl alco... Novel photochromic composite films have been successfully fabricated by dispersing pyrazolone derivative:1,3-Diphenyl-4-(3-chlorobenzal)-5-hydroxypyrazole 4-phenylsemicarbazone(la) into hydrosol of polyvinyl alcohol(PVA).The microstructure,photochromic behaviors and thermal bleaching properties were investigated by Raman spectroscopy,X-ray powder diffraction(XRD),field emission scanning electron microscopy(FE-SEM) and ultraviolet-visible absorption spectroscopy(UV-vis).The results showed that la was not only blended but also well dispersed in the PVA polymer films with a suitable content of chromophore.Upon UV light irradiation,the composite films gradually changed from colorless to yellow and recovered fully to the initial state upon thermal bleaching.The time constants of photochromic reactions were almost the same as those of la observed in their crystalline state,indicating that the photochromic phenomenon is barely disturbed by the polymer matrix. 展开更多
关键词 Pyrazolone Polyvinyl alcohol composite film Photochromism Information storage
原文传递
Effect of LaFeO_3 on hydrogenation/dehydrogenation properties of MgH_2 被引量:1
16
作者 张伟 程颖 +2 位作者 李永恒 段智琛 刘坚 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第3期334-338,共5页
LaFeO3 was used to improve the hydrogen storage properties of Mg H2. The Mg H2+20 wt.%La Fe O3 composite was prepared by ball milling method. The composite could absorb 3.417 wt.% of hydrogen within 21 min at 423 K w... LaFeO3 was used to improve the hydrogen storage properties of Mg H2. The Mg H2+20 wt.%La Fe O3 composite was prepared by ball milling method. The composite could absorb 3.417 wt.% of hydrogen within 21 min at 423 K while Mg H2 only uptaked 0.977 wt.% hydrogen under the same conditions. The composite also released 3.894 wt.% of hydrogen at 623 K, which was almost twice more than Mg H2. The TPD measurement showed that the onset dissociation temperature of the composite was 570 K, 80 K lower than the Mg H2. Based on the Kissinger plot analysis of the composite, the activation energy E des was estimated to be 86.69 k J/mol, which was 36 k J/mol lower than Mg H2. The XRD and SEM results demonstrated that highly dispersed La Fe O3 could be presented in Mg H2, benefiting the reduction of particle size and also acting as an inhibitor to keep the particles from clustering during the ball-milled process. 展开更多
关键词 magnesium hydride hydrogen storage composite hydrogen properties hydrogenation kinetics rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部