A series of novel Ni/CeOe-Al2O3 composite catalysts were synthesized by one-step citric acid complex method, The as-synthesized catalysts were characterized by N2 physical adsorption/desorption, X-ray diffraction (XR...A series of novel Ni/CeOe-Al2O3 composite catalysts were synthesized by one-step citric acid complex method, The as-synthesized catalysts were characterized by N2 physical adsorption/desorption, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, hydrogen temperature-programmed reduction (Hz-TPR), X-ray photoelectron spectroscopy (XPS) and thermogravimetry analysis (TGA). The effects of nickel content, calcination and reaction temperatures, gas hourly space velocity (GHSV) and inert gas dilution of N2 on their performance of catalytic partial oxidation of methane (CPOM) were investigated. Catalytic activity test results show that the highest methane conversion (〉85%), the best selectivities to carbon monoxide (〉87%) and to hydrogen (〉95%), the excellent stability and perfect Hz/CO ratio (2.0) can be obtained over Ni/CeO2-Al2O3 with 8 wt% Ni content calcined at 700 ℃ under the reaction condition of 750 ℃, CH4/O2 ratio of 2 : 1 and gas hourly space velocity of 12000 mL.h-1 .g-1. Characterization results show that the good catalytic performance of this composite catalyst can be contributed to its large specific surface area (~108 m2.g-1), small crystallite size, easy reducibility and low coking rate.展开更多
Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-...Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a CuCr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.展开更多
为实现苏里格区块难采储量的有效动用,对以往大型压裂技术进行优化升级,压裂液体系由胍胶交联冻胶压裂液升级为“滑溜水+线性胶+胍胶压裂液冻胶”变黏度复合压裂液,支撑剂选用中密度高强度40/70目+20/40目陶粒组合,通过裂缝支撑剖面模...为实现苏里格区块难采储量的有效动用,对以往大型压裂技术进行优化升级,压裂液体系由胍胶交联冻胶压裂液升级为“滑溜水+线性胶+胍胶压裂液冻胶”变黏度复合压裂液,支撑剂选用中密度高强度40/70目+20/40目陶粒组合,通过裂缝支撑剖面模拟和优化压裂施工参数,在保障施工安全的前提下,设计施工排量可满足8.0~9.0 m 3/min,形成了适合苏里格气田大型压裂技术。现场应用表明,大型压裂技术采用大排量、大液量、大砂量造复杂裂缝,加大了储层的渗透率,增加了气体可动区域,用液强度平均增大99%,加砂强度平均增大97%,日产气平均增加101.3%,取得了较好的增产效果,为后续该类区块的开发起到较好的借鉴和指导作用。展开更多
Three kinds of novel hydroxyapatite@terbium complex core-shell composites were synthesized with 2-chlorobenzoic acid,4-chlorobenzoic acid,and 2,4-dichlorobenzoic acid as the ligand,respectively.The XRD,UV/vis absorpti...Three kinds of novel hydroxyapatite@terbium complex core-shell composites were synthesized with 2-chlorobenzoic acid,4-chlorobenzoic acid,and 2,4-dichlorobenzoic acid as the ligand,respectively.The XRD,UV/vis absorption and FT-IR results show that terbium ions are coordinated with ligands and the corresponding complexes are successfully included into composites.SEM and EDS results reveal that Tb complexes are fully and homogenously coated on the surface of hydroxyapatite(HAP)microspheres consisting of a large number of nanosized crystals.The strongest luminescence properties are obtained when 2,4-dichlorobenzoic acid is used as ligand.The study on fluorescence lifetime of composites shows that the lifetime is inversely related to emission intensity.TGA-DSC results indicate that the core-shell composites have an excellent thermal stability.Therefore,the current core-shell structure provides a cost-effective route to manufacture of biocompatible and heatresistant highly luminescent materials.展开更多
Objective To find an ideal biomaterial for internal fixation. Methods Forty rabbits with fracture of the femur diaphysis (superiorcondyle) were treated by intramedullary nailing of femur with composites rod of resor...Objective To find an ideal biomaterial for internal fixation. Methods Forty rabbits with fracture of the femur diaphysis (superiorcondyle) were treated by intramedullary nailing of femur with composites rod of resorbable DL-polylactic acid (PDLLA)-calcium metaphosphate (CMP), while steinmann's pin as control. The fracture healing, the material degradation and its mechanical properties were studied by X-ray films, macroscopic, microscopic and electron microscopic observations. Results No significant inflammatory reaction was found, and all the osteotomies were healed, while material was resorbed. Conclusion The PDLLA-CMP has excellent biocompatibility and mechanical properties, and it can be a promising implant material in orthopaedics surgery.展开更多
In this work,an adsorbent,which we call MnPT,was prepared by combining MnO_(2),polyethylenimine and tannic acid,and exhibited efficient performance for Cu(Ⅱ) and Cr(VI) removal from aqueous solution.The oxygen/nitrog...In this work,an adsorbent,which we call MnPT,was prepared by combining MnO_(2),polyethylenimine and tannic acid,and exhibited efficient performance for Cu(Ⅱ) and Cr(VI) removal from aqueous solution.The oxygen/nitrogen-containing functional groups on the surface of MnPT might increase the enrichment of metal ions by complexation.The maximum adsorption capacities of MnPT for Cu(Ⅱ) and Cr(Ⅵ) were 121.5 and 790.2 mg·g^(-1),respectively.The surface complexation formation model was used to elucidate the physicochemical interplay in the process of Cu(Ⅱ) and Cr(Ⅵ) co-adsorption on MnPT.Electrostatic force,solvation action,adsorbate-adsorbate lateral interaction,and complexation were involved in the spontaneous adsorption process.Physical electrostatic action was dominant in the initial stage,whereas chemical action was the driving force leading to adsorption equilibrium.It should be noted that after adsorption on the surface of MnPT,Cr(Ⅵ) reacted with some reducing functional groups(hydroxylamine-NH_(2))and was converted into Cr(Ⅲ).The adsorption capacity declined by 12% after recycling five times.Understanding the adsorption mechanism might provide a technical basis for the procedural design of heavy metal adsorbents.This MnPT nanocomposite has been proven to be a low-cost,efficient,and promising adsorbent for removing heavy metal ions from wastewater.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.21067004 and No.21263005)the Technological Foundation of Jiangxi Province Education Office(No.GJJ12344)+1 种基金the Young Science and Technolgy Project of Jiangxi Province(No.20133BAB21003)the Young Scientist Training Project of Jiangxi Province(No.20122BCB23015)
文摘A series of novel Ni/CeOe-Al2O3 composite catalysts were synthesized by one-step citric acid complex method, The as-synthesized catalysts were characterized by N2 physical adsorption/desorption, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, hydrogen temperature-programmed reduction (Hz-TPR), X-ray photoelectron spectroscopy (XPS) and thermogravimetry analysis (TGA). The effects of nickel content, calcination and reaction temperatures, gas hourly space velocity (GHSV) and inert gas dilution of N2 on their performance of catalytic partial oxidation of methane (CPOM) were investigated. Catalytic activity test results show that the highest methane conversion (〉85%), the best selectivities to carbon monoxide (〉87%) and to hydrogen (〉95%), the excellent stability and perfect Hz/CO ratio (2.0) can be obtained over Ni/CeO2-Al2O3 with 8 wt% Ni content calcined at 700 ℃ under the reaction condition of 750 ℃, CH4/O2 ratio of 2 : 1 and gas hourly space velocity of 12000 mL.h-1 .g-1. Characterization results show that the good catalytic performance of this composite catalyst can be contributed to its large specific surface area (~108 m2.g-1), small crystallite size, easy reducibility and low coking rate.
基金Project (2003AA305820) supported by the National High-Tech Research and Development Program of ChinaProject(2006) supported by the Postdoctoral Foundation of Central South University, China
文摘Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a CuCr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.
文摘为实现苏里格区块难采储量的有效动用,对以往大型压裂技术进行优化升级,压裂液体系由胍胶交联冻胶压裂液升级为“滑溜水+线性胶+胍胶压裂液冻胶”变黏度复合压裂液,支撑剂选用中密度高强度40/70目+20/40目陶粒组合,通过裂缝支撑剖面模拟和优化压裂施工参数,在保障施工安全的前提下,设计施工排量可满足8.0~9.0 m 3/min,形成了适合苏里格气田大型压裂技术。现场应用表明,大型压裂技术采用大排量、大液量、大砂量造复杂裂缝,加大了储层的渗透率,增加了气体可动区域,用液强度平均增大99%,加砂强度平均增大97%,日产气平均增加101.3%,取得了较好的增产效果,为后续该类区块的开发起到较好的借鉴和指导作用。
基金Project supported by the Major Project of Natural Science Research in Universities of Anhui Province(KJ2018ZD037,KJ2016A550)Horizontal Cooperation Project of Fuyang Municipal Government and Fuyang Normal University(XDHX201717,XDHX2016011,XDHX2016004)。
文摘Three kinds of novel hydroxyapatite@terbium complex core-shell composites were synthesized with 2-chlorobenzoic acid,4-chlorobenzoic acid,and 2,4-dichlorobenzoic acid as the ligand,respectively.The XRD,UV/vis absorption and FT-IR results show that terbium ions are coordinated with ligands and the corresponding complexes are successfully included into composites.SEM and EDS results reveal that Tb complexes are fully and homogenously coated on the surface of hydroxyapatite(HAP)microspheres consisting of a large number of nanosized crystals.The strongest luminescence properties are obtained when 2,4-dichlorobenzoic acid is used as ligand.The study on fluorescence lifetime of composites shows that the lifetime is inversely related to emission intensity.TGA-DSC results indicate that the core-shell composites have an excellent thermal stability.Therefore,the current core-shell structure provides a cost-effective route to manufacture of biocompatible and heatresistant highly luminescent materials.
文摘Objective To find an ideal biomaterial for internal fixation. Methods Forty rabbits with fracture of the femur diaphysis (superiorcondyle) were treated by intramedullary nailing of femur with composites rod of resorbable DL-polylactic acid (PDLLA)-calcium metaphosphate (CMP), while steinmann's pin as control. The fracture healing, the material degradation and its mechanical properties were studied by X-ray films, macroscopic, microscopic and electron microscopic observations. Results No significant inflammatory reaction was found, and all the osteotomies were healed, while material was resorbed. Conclusion The PDLLA-CMP has excellent biocompatibility and mechanical properties, and it can be a promising implant material in orthopaedics surgery.
基金supported by the National Natural Science Foundation of China(Grant Nos.41573103,41340037)the Shandong Provincial Key Research and Development Program(Grant Nos.2017GSF16105,2018GGX102004,2018GSF117007)the Taishan Scholar Program(Grant No.ts201712045)of Shandong Province of China.
文摘In this work,an adsorbent,which we call MnPT,was prepared by combining MnO_(2),polyethylenimine and tannic acid,and exhibited efficient performance for Cu(Ⅱ) and Cr(VI) removal from aqueous solution.The oxygen/nitrogen-containing functional groups on the surface of MnPT might increase the enrichment of metal ions by complexation.The maximum adsorption capacities of MnPT for Cu(Ⅱ) and Cr(Ⅵ) were 121.5 and 790.2 mg·g^(-1),respectively.The surface complexation formation model was used to elucidate the physicochemical interplay in the process of Cu(Ⅱ) and Cr(Ⅵ) co-adsorption on MnPT.Electrostatic force,solvation action,adsorbate-adsorbate lateral interaction,and complexation were involved in the spontaneous adsorption process.Physical electrostatic action was dominant in the initial stage,whereas chemical action was the driving force leading to adsorption equilibrium.It should be noted that after adsorption on the surface of MnPT,Cr(Ⅵ) reacted with some reducing functional groups(hydroxylamine-NH_(2))and was converted into Cr(Ⅲ).The adsorption capacity declined by 12% after recycling five times.Understanding the adsorption mechanism might provide a technical basis for the procedural design of heavy metal adsorbents.This MnPT nanocomposite has been proven to be a low-cost,efficient,and promising adsorbent for removing heavy metal ions from wastewater.