Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th...Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.展开更多
Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative...Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。展开更多
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl...It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.展开更多
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan...Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.展开更多
This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with high...This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%.展开更多
ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distr...ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distribution characteristics of various branches in each cubic lattice by using the canopy cellular method. ResultThe results showed that: The total number of scaffold branches of evacuation layered tree shape was 97, which mainly distributed in the lower layer and middle part of the canopy; the total number of scaffold branches of open-center tree shape was 94, which mainly distributed in the lower layer and middle part of the canopy. The total number of annual branches of evacuation layered tree shape was 3 920, which mainly distributed in the middle layer and outer part of the canopy; and the total number of annual branches of the open-center tree shape was 3 183, which mainly distributed in middle layer and outer part of the canopy. The total number of perennial branches of evacuation layered tree shape was 2 184, which mainly distributed in lower layer and outer part of the canopy; the total number of perennial branches of open-center tree shape was 1 444, which mainly distributed in middle layer and outer part of the canopy. ConclusionThe total number and the distribution positions of scaffold branches in the canopy of each tree shape were basically the same. The total numbers of annual branches of the two kinds of tree shapes were different, but the distribution positions were basically the same. The total numbers and the distribution positions of perennial branches in the canopy of the two kinds of tree shapes were different.展开更多
Patterns of woody regeneration in terms of species composition and diversity were studied in mixed deciduous forest (MDF) and deciduous dipterocarp forest (DDF) in Minbyin reserved forest of Lewe Township. A total of ...Patterns of woody regeneration in terms of species composition and diversity were studied in mixed deciduous forest (MDF) and deciduous dipterocarp forest (DDF) in Minbyin reserved forest of Lewe Township. A total of 57 plant species of MDF belonging to 28 families and 342 individuals and 25 plant species of DDF consist of 15 families and 285 individuals were identified. Plant species diversity was quantitatively higher in the MDF (H' = 3.68) compared to the DDF (H' = 2.39). Tectona grandis showed the highest density (30), dominance (4.40 m<sup>2</sup>) and IVI (27.01) of MDF and Dipterocarpus tuberculatus also composed the highest density (109), dominance (9.02 m<sup>2</sup>) and IVI (81.87) in DDF. The smallest diameter class (10 - 20 cm) comprised with 29 species, 103 individuals in MDF and 18 species, 85 individuals in DDF. The size class distribution displayed a reverse J-shaped pattern. The largest numbers of species were concentrated in the smallest height class in both investigated forests because of height and diameter distribution is closely related. The total densities of seedlings and saplings were 1219 and 531 ha<sup>-1</sup> in MDF and 988 and 444 ha<sup>-1</sup> in DDF respectively. Although soil texture of (40 - 50 cm) and (90 - 100 cm) were sandy clay loam in mixed deciduous forest, the other layers of both investigated forests were sandy loam.展开更多
To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite ...To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite structure(BRCS)under triaxial compression,which includes deformation,failure patterns,strength characteristics,and acoustic emission(AE)evolution,was proposed.The models used in the tests have one rough interface,two cement–iron tailings ratios(CTRs),four interface angles(IAs),and three confining pressures(CPs).Results showed that the deformation,strength characteristics,and failure patterns of BRCS under triaxial compression depend on IA,CP,and CTR.The stress–strain curves of BRCS under triaxial compression could be divided into five stages,namely,compaction,elasticity,yield,strain softening,and residual stress.The relevant AE counts have corresponding relationships with different stages.The triaxial compressive strengths of composites increase linearly with the increase of the CP.Furthermore,the CP stress strengthening effect occurs.When the IAs are45°and 60°,the failure areas of composites appear in the interface and backfill.When the IAs are 75°and 90°,the failure areas of composites appear in the backfill,interface,and rock.Moreover,the corresponding failure modes yield the combined shear failure.The research results provide the basis for further understanding of the stability of the BRCS.展开更多
A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples mu...A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples must be investigated.This paper examines the deformation characteristics and damage evolution of six types of BPB composite samples using a digital speckle correlation method under uniaxial compression conditions.A new damage evolution equation was established on the basis of the input strain energy and dissipated strain energy at the peak stress.The prevention and control mechanisms of the backfilling body on the coal pillar instability were discussed.The results show that the deformation localization and macroscopic cracks of the BPB composite samples first appeared at the coal-backfilling interface,and then expanded to the backfilling elements,ultimately appearing in the coal elements.The elastic strain energy in the BPB composite samples reached a maximum at the peak stress,whereas the dissipated energy continued to accumulate and increase.The damage evolution curve and equation agree well with the test results,providing further understanding of instability prevention and the control mechanisms of the BPB composite samples.The restraining effect on the coal pillar was gradually reduced with decreasing backfilling body element's volume ratio,and the BPB composite structure became more vulnerable to failure.This research is expected to guide the design,stability monitoring,instability prevention,and control of BPB structures in pillar-side cemented paste backfilling mining.展开更多
The most of high/ultrahigh-pressure(HP/UHP)terranes of the world are characterized by the occurrence of numerous pods,lenses or layered blocks of eclogite and amphibolites(e.g.O’Brien,1997;Elvevold and Gilotti,2000;Z...The most of high/ultrahigh-pressure(HP/UHP)terranes of the world are characterized by the occurrence of numerous pods,lenses or layered blocks of eclogite and amphibolites(e.g.O’Brien,1997;Elvevold and Gilotti,2000;Zhang et al.,2003;and references there in).Field and petrological features suggest that amphibolites should展开更多
In order to solve the thickness dependence of plasma absorption of electromagnetic waves and further reduce the backward radar scattering cross section(RCS)of the target,we designed a novel composite structure of a me...In order to solve the thickness dependence of plasma absorption of electromagnetic waves and further reduce the backward radar scattering cross section(RCS)of the target,we designed a novel composite structure of a metasurface and plasma.A metasurface with three absorption peaks is designed by means of an equivalent circuit based on an electromagnetic resonance type metamaterial absorber.The reflection and absorption of the composite structure are numerically and experimentally verified.The finite integration method was used to simulate a composite structure of finite size to obtain the RCS.The experimental measurements of electromagnetic wave reflection were conducted by a vector network analyzer(Keysight N5234A)and horn antennas,etc.The research showed that the absorption capacity of this composite structure was substantially improved compared to either the plasma or the metasurface,and it is more convenient for application due to its low plasma thickness requirement and easy fabrication.展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS...The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction(XRD). The effects of brazing atmospheres on the as-brazed NiCr brazing alloy composite structures and interracial microstructure are studied between diamond grits and brazing alloy. Results show that: (1) There are different composite structures of as-brazed NiCr brazing alloy under different oxygen partial pressures in vacuum and argon gas. B203 exists on the surface of the brazed samples under argon gas furnace brazing. It indicates that oxygen plays an important role in the resultants of as-brazed NiCr brazing alloy during the brazing process. (2) There are different interfacial microstructures in different brazing atmospheres, but the main reaction product is chromium carbides. The chromium carbides in argon gas furnace brazing grow in a disordered form, but those in vacuum furnace brazing grow radiated. And the scale of grains in argon gas is smaller than those in vacuum.展开更多
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties...Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.展开更多
Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding sta...Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.展开更多
Flower-like copper foam Co_(3)O_(4) catalysts(Co_(3)O_(4)/CF) were prepared by hydrothermal method.The crystalline structure and microscopic morphology of the prepared samples were characterized by using X-ray diffrac...Flower-like copper foam Co_(3)O_(4) catalysts(Co_(3)O_(4)/CF) were prepared by hydrothermal method.The crystalline structure and microscopic morphology of the prepared samples were characterized by using X-ray diffractometer(XRD) and scanning electron microscope(SEM),and the electrochemical properties were investigated by an electrochemical workstation.The experimental results show that the Co_(3)O_(4) catalysts are successfully prepared on the foamed copper support by hydrothermal method,and the material’s morphology is mainly flower cluster.When the current density is 10 mA·cm^(-2),the overpotential value of the Co_(3)O_(4)/CF catalyst is 141 mV,lower than that of blank support.The electrochemical impedance(EIS) spectrum shows that the R_(ct )value of the Co_(3)O_(4)/CF catalyst decreases,and the Coulomb curves of double-layer show that the electrochemically active area of the Co_(3)O_(4)/CF catalyst efficiently increases compared with that of the blank support.Therefore,the as-obtained Co_(3)O_(4)/CF catalyst exhibits a good hydrogen evolution rate,showing great applicability potential in the catalytic electrolysis of water for hydrogen production.展开更多
A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distingui...A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.Damage indices are defined after the Lamb wave signals are processed by Fourier transform,and a Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.Then,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuator-sensor paths to identify the location of damage.Damage indices under damaged state are used to generate the diagnostic image.Experimental study on a stiffened composite panel with random temperature changes is performed to demonstrate the effectiveness of the proposed method.展开更多
Timber-concrete composite structures are coming to be very important in housing sector.They have many advantages compared to traditional timber floors and are widely used as an effective method for refurbishment of ex...Timber-concrete composite structures are coming to be very important in housing sector.They have many advantages compared to traditional timber floors and are widely used as an effective method for refurbishment of existing timber floors.Current research at CTU(Czech Technical University)is focused on industrial production of prefabricated timber-concrete panels and their easy and quick assembly,in order to reduce the total cost of production,transport and assembly.A new shear connector was developed for those purposes.It is a punched metal plate fastener with double-sided teeth and omitted area nearby contact of timber and concrete.Direct shear tests were performed on four series of punched metal plate fasteners with different geometrical properties.Results of these tests and determination of slip modules Kser and Ku is presented in this paper.展开更多
A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composit...A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed.展开更多
Finite element modeling methods of steel-concrete composite structure with overlap slab were investigated. A two-step finite element method was presented. It was applied to analyze an extra long span composite bridge....Finite element modeling methods of steel-concrete composite structure with overlap slab were investigated. A two-step finite element method was presented. It was applied to analyze an extra long span composite bridge. The conversion of structure system and the mechanical behavior of the bridge were analyzed with two different construction methods. The stresses of steel beams, precast slabs and in-situ-place concrete under the total load were compared. The results show that steel-concrete composite structure with overlap slab has many advantages, the construction method that the top in-situ concrete and the concrete in construction joints are cast respectively is rather reasonable than the one that the top in-situ concrete and the concrete in construction joints are cast at the same time, and the two-step finite element method is affective to such large-scale structures.展开更多
基金supported by the National Natural Science Foundation of China(21972049,21573080)。
文摘Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.
基金support from National Natural Science Foundation of China(32072267)supported by China Agriculture Research System of CRAS-14.
文摘Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。
基金supported by the Guangdong Basic and Applied Basic Research Foundation (2020B1515120013,2022B1515120066)National Natural Science Foundation of China (Nos.U2001218, 51875215)+1 种基金Key-Area Research and Development Program of Guangdong Province (2020B090923001)Special Support Foundation of Guangdong Province (No.2019TQ05Z110)。
文摘It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.
基金supported by the National Natural Science Foundation of China(No.12072056)the National Key Research and Development Program of China(No.2018YFA0702800)+1 种基金the Jiangsu-Czech Bilateral Co-Funding R&D Project(No.BZ2023011)the Fundamental Research Funds for the Central Universities(No.B220204002).
文摘Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.
基金the financial support from Zhuzhou Times New Material Technology Co.LtD.(Grant No.XCFDJS-2022-00004495)Chilean National Agency for Research and Development(Basal FB0008).
文摘This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%.
基金Supported by National Department Public Benefit Research Foundation(201304701-4)Science and Technology Planning Program of Xinjiang Uygur Autonomous RegionXinjiang Uygur Autonomous Region Fruit Major Subjects~~
文摘ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distribution characteristics of various branches in each cubic lattice by using the canopy cellular method. ResultThe results showed that: The total number of scaffold branches of evacuation layered tree shape was 97, which mainly distributed in the lower layer and middle part of the canopy; the total number of scaffold branches of open-center tree shape was 94, which mainly distributed in the lower layer and middle part of the canopy. The total number of annual branches of evacuation layered tree shape was 3 920, which mainly distributed in the middle layer and outer part of the canopy; and the total number of annual branches of the open-center tree shape was 3 183, which mainly distributed in middle layer and outer part of the canopy. The total number of perennial branches of evacuation layered tree shape was 2 184, which mainly distributed in lower layer and outer part of the canopy; the total number of perennial branches of open-center tree shape was 1 444, which mainly distributed in middle layer and outer part of the canopy. ConclusionThe total number and the distribution positions of scaffold branches in the canopy of each tree shape were basically the same. The total numbers of annual branches of the two kinds of tree shapes were different, but the distribution positions were basically the same. The total numbers and the distribution positions of perennial branches in the canopy of the two kinds of tree shapes were different.
文摘Patterns of woody regeneration in terms of species composition and diversity were studied in mixed deciduous forest (MDF) and deciduous dipterocarp forest (DDF) in Minbyin reserved forest of Lewe Township. A total of 57 plant species of MDF belonging to 28 families and 342 individuals and 25 plant species of DDF consist of 15 families and 285 individuals were identified. Plant species diversity was quantitatively higher in the MDF (H' = 3.68) compared to the DDF (H' = 2.39). Tectona grandis showed the highest density (30), dominance (4.40 m<sup>2</sup>) and IVI (27.01) of MDF and Dipterocarpus tuberculatus also composed the highest density (109), dominance (9.02 m<sup>2</sup>) and IVI (81.87) in DDF. The smallest diameter class (10 - 20 cm) comprised with 29 species, 103 individuals in MDF and 18 species, 85 individuals in DDF. The size class distribution displayed a reverse J-shaped pattern. The largest numbers of species were concentrated in the smallest height class in both investigated forests because of height and diameter distribution is closely related. The total densities of seedlings and saplings were 1219 and 531 ha<sup>-1</sup> in MDF and 988 and 444 ha<sup>-1</sup> in DDF respectively. Although soil texture of (40 - 50 cm) and (90 - 100 cm) were sandy clay loam in mixed deciduous forest, the other layers of both investigated forests were sandy loam.
基金financially supported by the National Natural Science Foundation of China(No.51774137)the Natural Science Foundation of Hebei Province,China(No.E2021209006)。
文摘To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite structure(BRCS)under triaxial compression,which includes deformation,failure patterns,strength characteristics,and acoustic emission(AE)evolution,was proposed.The models used in the tests have one rough interface,two cement–iron tailings ratios(CTRs),four interface angles(IAs),and three confining pressures(CPs).Results showed that the deformation,strength characteristics,and failure patterns of BRCS under triaxial compression depend on IA,CP,and CTR.The stress–strain curves of BRCS under triaxial compression could be divided into five stages,namely,compaction,elasticity,yield,strain softening,and residual stress.The relevant AE counts have corresponding relationships with different stages.The triaxial compressive strengths of composites increase linearly with the increase of the CP.Furthermore,the CP stress strengthening effect occurs.When the IAs are45°and 60°,the failure areas of composites appear in the interface and backfill.When the IAs are 75°and 90°,the failure areas of composites appear in the backfill,interface,and rock.Moreover,the corresponding failure modes yield the combined shear failure.The research results provide the basis for further understanding of the stability of the BRCS.
基金supported by the Shanxi Science and Technology Major Project (No.20201102004)the Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)+2 种基金the National Natural Science Foundation of China (Nos.52174125,52004171,and 51904203)the Outstanding Youth Cultivation Project in Shanxi Province,China (No.202103021222008)the Key Science and Technology Innovation Team of“1331”Project in Shanxi Province,China,and the Open Fund Project of Key Laboratory of Mining Disaster Prevention and Control (No.MDPC202004)。
文摘A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples must be investigated.This paper examines the deformation characteristics and damage evolution of six types of BPB composite samples using a digital speckle correlation method under uniaxial compression conditions.A new damage evolution equation was established on the basis of the input strain energy and dissipated strain energy at the peak stress.The prevention and control mechanisms of the backfilling body on the coal pillar instability were discussed.The results show that the deformation localization and macroscopic cracks of the BPB composite samples first appeared at the coal-backfilling interface,and then expanded to the backfilling elements,ultimately appearing in the coal elements.The elastic strain energy in the BPB composite samples reached a maximum at the peak stress,whereas the dissipated energy continued to accumulate and increase.The damage evolution curve and equation agree well with the test results,providing further understanding of instability prevention and the control mechanisms of the BPB composite samples.The restraining effect on the coal pillar was gradually reduced with decreasing backfilling body element's volume ratio,and the BPB composite structure became more vulnerable to failure.This research is expected to guide the design,stability monitoring,instability prevention,and control of BPB structures in pillar-side cemented paste backfilling mining.
文摘The most of high/ultrahigh-pressure(HP/UHP)terranes of the world are characterized by the occurrence of numerous pods,lenses or layered blocks of eclogite and amphibolites(e.g.O’Brien,1997;Elvevold and Gilotti,2000;Zhang et al.,2003;and references there in).Field and petrological features suggest that amphibolites should
基金financially supported by National Natural Science Foundation of China(No.12175050)the Foundation of National Key Laboratory of Electromagnetic Environment of China(No.202101003)。
文摘In order to solve the thickness dependence of plasma absorption of electromagnetic waves and further reduce the backward radar scattering cross section(RCS)of the target,we designed a novel composite structure of a metasurface and plasma.A metasurface with three absorption peaks is designed by means of an equivalent circuit based on an electromagnetic resonance type metamaterial absorber.The reflection and absorption of the composite structure are numerically and experimentally verified.The finite integration method was used to simulate a composite structure of finite size to obtain the RCS.The experimental measurements of electromagnetic wave reflection were conducted by a vector network analyzer(Keysight N5234A)and horn antennas,etc.The research showed that the absorption capacity of this composite structure was substantially improved compared to either the plasma or the metasurface,and it is more convenient for application due to its low plasma thickness requirement and easy fabrication.
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.
基金Supported by the National Natural Science Foundation of China(50475040)the Aeronautical Science Foundation of China(2005ZH52060)the Natural Science Foundation of Jiangsu Province(BK2006723)~~
文摘The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction(XRD). The effects of brazing atmospheres on the as-brazed NiCr brazing alloy composite structures and interracial microstructure are studied between diamond grits and brazing alloy. Results show that: (1) There are different composite structures of as-brazed NiCr brazing alloy under different oxygen partial pressures in vacuum and argon gas. B203 exists on the surface of the brazed samples under argon gas furnace brazing. It indicates that oxygen plays an important role in the resultants of as-brazed NiCr brazing alloy during the brazing process. (2) There are different interfacial microstructures in different brazing atmospheres, but the main reaction product is chromium carbides. The chromium carbides in argon gas furnace brazing grow in a disordered form, but those in vacuum furnace brazing grow radiated. And the scale of grains in argon gas is smaller than those in vacuum.
文摘Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.
基金National Natural Science Foundation of China under Grant (Nos.52192662,52020105005,51908320)the Beijing Nova Program under Grant No.20220484012+1 种基金the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities,FRF-IDRY-22-013)the Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province (Huaqiao University,IIM-01-05)。
文摘Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.
基金Funded by the National Natural Science Foundation of China(No.51474170)the Foundation of Shaanxi Educational Committee(No.17JK0395)the Xi’an Science and Technology Committee Program(No.GXYD9.2)。
文摘Flower-like copper foam Co_(3)O_(4) catalysts(Co_(3)O_(4)/CF) were prepared by hydrothermal method.The crystalline structure and microscopic morphology of the prepared samples were characterized by using X-ray diffractometer(XRD) and scanning electron microscope(SEM),and the electrochemical properties were investigated by an electrochemical workstation.The experimental results show that the Co_(3)O_(4) catalysts are successfully prepared on the foamed copper support by hydrothermal method,and the material’s morphology is mainly flower cluster.When the current density is 10 mA·cm^(-2),the overpotential value of the Co_(3)O_(4)/CF catalyst is 141 mV,lower than that of blank support.The electrochemical impedance(EIS) spectrum shows that the R_(ct )value of the Co_(3)O_(4)/CF catalyst decreases,and the Coulomb curves of double-layer show that the electrochemically active area of the Co_(3)O_(4)/CF catalyst efficiently increases compared with that of the blank support.Therefore,the as-obtained Co_(3)O_(4)/CF catalyst exhibits a good hydrogen evolution rate,showing great applicability potential in the catalytic electrolysis of water for hydrogen production.
基金Supported by the Aeronautical Science Foundation of China(2008ZA52012)the Six Kinds of Excellent Talent Project in Jiangsu Province of China(2010JZ004)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NS2010027)~~
文摘A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.Damage indices are defined after the Lamb wave signals are processed by Fourier transform,and a Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.Then,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuator-sensor paths to identify the location of damage.Damage indices under damaged state are used to generate the diagnostic image.Experimental study on a stiffened composite panel with random temperature changes is performed to demonstrate the effectiveness of the proposed method.
基金the financial support of Czech Technical University in Prague,project No:SGS11/146/OHK1/3T/11.
文摘Timber-concrete composite structures are coming to be very important in housing sector.They have many advantages compared to traditional timber floors and are widely used as an effective method for refurbishment of existing timber floors.Current research at CTU(Czech Technical University)is focused on industrial production of prefabricated timber-concrete panels and their easy and quick assembly,in order to reduce the total cost of production,transport and assembly.A new shear connector was developed for those purposes.It is a punched metal plate fastener with double-sided teeth and omitted area nearby contact of timber and concrete.Direct shear tests were performed on four series of punched metal plate fasteners with different geometrical properties.Results of these tests and determination of slip modules Kser and Ku is presented in this paper.
基金Project(SS2015AA031101)supported by the National High-tech R&D Program of China
文摘A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed.
基金Project(2001G022) supported by the Science and Technology Development Program of Railways Department, China
文摘Finite element modeling methods of steel-concrete composite structure with overlap slab were investigated. A two-step finite element method was presented. It was applied to analyze an extra long span composite bridge. The conversion of structure system and the mechanical behavior of the bridge were analyzed with two different construction methods. The stresses of steel beams, precast slabs and in-situ-place concrete under the total load were compared. The results show that steel-concrete composite structure with overlap slab has many advantages, the construction method that the top in-situ concrete and the concrete in construction joints are cast respectively is rather reasonable than the one that the top in-situ concrete and the concrete in construction joints are cast at the same time, and the two-step finite element method is affective to such large-scale structures.