CuIn(S,Se)2 thin films were prepared by thermal crystallization of co-sputtered Cu-In alloy precursors in S/Se atmosphere. In-depth compositional uniformity is an important prereq- uisite for obtaining device-qualit...CuIn(S,Se)2 thin films were prepared by thermal crystallization of co-sputtered Cu-In alloy precursors in S/Se atmosphere. In-depth compositional uniformity is an important prereq- uisite for obtaining device-quality CuIn(S,Se)2 absorber thin films. In order to figure out the influence of heat treatments on in-depth composition uniformity of CuIn(S,Se)2 thin films, two kinds of reaction temperature profiles were investigated. One process is "one step profile", referring to formation of CuIn(S,Se)2 thin films just at elevated temperature (e.g. 500 ℃). The other is "two step profile", which allows for slow diffusion of S and Se elements into the alloy precursors at a low temperature before the formation and re-crystallization of CuIn(S,Se)2 thin films at higher temperature (e.g. first 250 ℃ then 500 ℃). X-ray diffrac- tion studies reveal that there is a discrepancy in the shape of (112) peak. Samples annealed with "one step profile" have splits on (112) peaks, while samples annealed with "two step profile" have relatively symmetrical (112) peaks. Grazing incident X-ray diffraction and en- ergy dispersive spectrum measurements of samples successively etched in bromine methanol show that CuIn(S,Se)2 thin films have better in-depth composition uniformity after "two step profile" annealing. The reaction mechanism during the two thermal processing was also investigated by X-ray diffraction and Raman spectra.展开更多
The effect of the laser processing parameters on the composition uniformity and shape coefficient of fusion zone with laser surface alloyed Cr plated on medium carbon low alloy steel has been studied.It was found that...The effect of the laser processing parameters on the composition uniformity and shape coefficient of fusion zone with laser surface alloyed Cr plated on medium carbon low alloy steel has been studied.It was found that the composition uniformity depends on the shape coefficient of fusion zone,and the later is a function of both power density and interaction time.If the power density is fixed to a certain value,the shape coefficient is directly,propor- tional to the interaction time.A completely,uniform molten pool can be obtained,when the shape coefficient is between 1.6 and 3.0.展开更多
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ...Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity.展开更多
Effects of operating parameters in the thermal gradient chemical vapor infiltration of propane such as thermal gradient, diffusion, infiltrations time, and concentration of propane were studied by focusing on the visu...Effects of operating parameters in the thermal gradient chemical vapor infiltration of propane such as thermal gradient, diffusion, infiltrations time, and concentration of propane were studied by focusing on the visualizations of the intrinsic effects of these parameters. A uniform deposition in the preform was obtained with a gradually increasing temperature along the gas flow. The uniformity of deposition through the preform got improved with increasing deposition time. Results of numerical modeling estimated the experimental data very well when the pre-exponential factor of the overall rate of carbon deposition from propane reported by Vaidyaraman[1] was multiplied by 4. The average density of a preform increased by about 3 times from 0.38 to 1.15 g/cm3 after 60 hr deposition with a thermal gradient under the conditions of 3% propane in nitrogen and 840 to 900 ℃.展开更多
文摘CuIn(S,Se)2 thin films were prepared by thermal crystallization of co-sputtered Cu-In alloy precursors in S/Se atmosphere. In-depth compositional uniformity is an important prereq- uisite for obtaining device-quality CuIn(S,Se)2 absorber thin films. In order to figure out the influence of heat treatments on in-depth composition uniformity of CuIn(S,Se)2 thin films, two kinds of reaction temperature profiles were investigated. One process is "one step profile", referring to formation of CuIn(S,Se)2 thin films just at elevated temperature (e.g. 500 ℃). The other is "two step profile", which allows for slow diffusion of S and Se elements into the alloy precursors at a low temperature before the formation and re-crystallization of CuIn(S,Se)2 thin films at higher temperature (e.g. first 250 ℃ then 500 ℃). X-ray diffrac- tion studies reveal that there is a discrepancy in the shape of (112) peak. Samples annealed with "one step profile" have splits on (112) peaks, while samples annealed with "two step profile" have relatively symmetrical (112) peaks. Grazing incident X-ray diffraction and en- ergy dispersive spectrum measurements of samples successively etched in bromine methanol show that CuIn(S,Se)2 thin films have better in-depth composition uniformity after "two step profile" annealing. The reaction mechanism during the two thermal processing was also investigated by X-ray diffraction and Raman spectra.
文摘The effect of the laser processing parameters on the composition uniformity and shape coefficient of fusion zone with laser surface alloyed Cr plated on medium carbon low alloy steel has been studied.It was found that the composition uniformity depends on the shape coefficient of fusion zone,and the later is a function of both power density and interaction time.If the power density is fixed to a certain value,the shape coefficient is directly,propor- tional to the interaction time.A completely,uniform molten pool can be obtained,when the shape coefficient is between 1.6 and 3.0.
基金financially supported by the National Key Research and Development Program of China(Grant No.2020YFB2008300)。
文摘Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(NRF-2013R1A1A2007280)partially supported by the 2014 Hongik University Research Fund
文摘Effects of operating parameters in the thermal gradient chemical vapor infiltration of propane such as thermal gradient, diffusion, infiltrations time, and concentration of propane were studied by focusing on the visualizations of the intrinsic effects of these parameters. A uniform deposition in the preform was obtained with a gradually increasing temperature along the gas flow. The uniformity of deposition through the preform got improved with increasing deposition time. Results of numerical modeling estimated the experimental data very well when the pre-exponential factor of the overall rate of carbon deposition from propane reported by Vaidyaraman[1] was multiplied by 4. The average density of a preform increased by about 3 times from 0.38 to 1.15 g/cm3 after 60 hr deposition with a thermal gradient under the conditions of 3% propane in nitrogen and 840 to 900 ℃.