Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu...Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.展开更多
Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness s...Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness structures,including design,manufacture,experiment,and simulation.Based on the minimum curvature radius and process schemes,two types of T-stiffened panels were designed and manufactured.Uniaxial compression tests have been carried out and the results indicate that the buckling load of variable stiffness specimens is increased by 26.0%,while the failure load is decreased by 19.6%.The influence mechanism of variable stiffness design on the buckling and failure behavior of T-stiffened panels was explicated by numerical analysis.The primary reason for the reduced strength is the significantly increased load bearing ratio of stiffeners.As experimental investigations of stiffened variable stiffness structures are very rare,this study can be considered a reference for future work.展开更多
On the base of controllable variable stiffness property,variable stiffness composites were the main components of functional materials in aerospace.However,the relatively low mechanical strength,stiffness range,and re...On the base of controllable variable stiffness property,variable stiffness composites were the main components of functional materials in aerospace.However,the relatively low mechanical strength,stiffness range,and response rate restricted the application of variable stiffness composite.In this work,the novel variable stiffness composite system with characteristics of repeatable high load bearing and response rate was successfully prepared via the double-layer anisotropic structure to solve the bottlenecks of variable stiffness composites.The novel variable stiffness composite systems were composed of variable stiffness layer of polycaprolactone(PCL)and the driven layer of silicone elastomer with alcohol,which continuously changed Young’s modulus from 0.1 to 7.263 MPa(72.63 times variation)in 200 s and maintained maximum weight of 11.52 times its own weight(8.5 g).Attributed to the relatively high variable stiffness range and load bearing value of variable stiffness composite system,the repeatable response process led to the efficient high load driven as“muscle”and diversified precise grab of objects with different shapes as“gripper”,owning widespread application prospects in the field of bionics.展开更多
基金Project(JCYJ20190808175801656)supported by the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2021M691427)supported by Postdoctoral Science Foundation of ChinaProject(9680086)supported by the City University of Hong Kong,China。
文摘Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.
基金Supported by the National Natural Science Foundation of China(No.11902124).
文摘Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness structures,including design,manufacture,experiment,and simulation.Based on the minimum curvature radius and process schemes,two types of T-stiffened panels were designed and manufactured.Uniaxial compression tests have been carried out and the results indicate that the buckling load of variable stiffness specimens is increased by 26.0%,while the failure load is decreased by 19.6%.The influence mechanism of variable stiffness design on the buckling and failure behavior of T-stiffened panels was explicated by numerical analysis.The primary reason for the reduced strength is the significantly increased load bearing ratio of stiffeners.As experimental investigations of stiffened variable stiffness structures are very rare,this study can be considered a reference for future work.
基金the project of the National Key Research and Development Program of China(2018YFA0703300)the National Natural Science Foundation of China(52105302,52175271,52021003,and 91848204)+1 种基金the team of Innovation and entrepreneurship of Jilin Province(20210509047RQ,20210508057RQ)the Program for JLU Science and Technology Innovative Research Team(2017TD-04).
文摘On the base of controllable variable stiffness property,variable stiffness composites were the main components of functional materials in aerospace.However,the relatively low mechanical strength,stiffness range,and response rate restricted the application of variable stiffness composite.In this work,the novel variable stiffness composite system with characteristics of repeatable high load bearing and response rate was successfully prepared via the double-layer anisotropic structure to solve the bottlenecks of variable stiffness composites.The novel variable stiffness composite systems were composed of variable stiffness layer of polycaprolactone(PCL)and the driven layer of silicone elastomer with alcohol,which continuously changed Young’s modulus from 0.1 to 7.263 MPa(72.63 times variation)in 200 s and maintained maximum weight of 11.52 times its own weight(8.5 g).Attributed to the relatively high variable stiffness range and load bearing value of variable stiffness composite system,the repeatable response process led to the efficient high load driven as“muscle”and diversified precise grab of objects with different shapes as“gripper”,owning widespread application prospects in the field of bionics.