Field experiments were conducted to determine the effect of composts prepared from different organic materials with rock phosphate (RP) on yield and P uptake of berseem and their residual effect on maize crop (cv. Aza...Field experiments were conducted to determine the effect of composts prepared from different organic materials with rock phosphate (RP) on yield and P uptake of berseem and their residual effect on maize crop (cv. Azam) during 2011-2012. Composts prepared from RP fed farm yard manure (FYM), simple FYM, organic waste and city garbage were applied at the rate based on their P concentrations. Composts significantly (P ≤ 0.05) increased total dry matter weight of Berseem in first and second cut over control. Residual effect of the prepared composts was determined on yield and plant P uptake of maize in the same layout of Berseem. Maximum and significantly (P ≤ 0.05) higher maize grain yield, total dry matter yield and stover yield of 3161 kg·ha-1, 9633 kg·ha-1 and 6472 kg·ha-1, respectively were recorded by the residual effect of compost of organic waste with half dose of SSP. Thousand grains weight of 220 g was noted in the treatment of residual effect of compost of RP fed FYM with half dose of SSP. Post harvest soil N and P concentrations improved with composting. Significant (P ≤ 0.05) increases in N and P uptake by berseem and maize plants were observed with added composts. Results suggest that the use of composts prepared from different organic materials with RP is environmental friendly and has potential to improve crops yield and plants N and P uptakes for a prolonged time.展开更多
The aim of this article was to assess the influence of long-term application of compost on the physical, chemical, and biological properties, as well as the fertility, of soil in a field subjected to double cropping (...The aim of this article was to assess the influence of long-term application of compost on the physical, chemical, and biological properties, as well as the fertility, of soil in a field subjected to double cropping (paddy rice and barley), mainly by integrating previous studies of the effects of compost and manure on soil qualities. Continuous compost application, especially at a high level (30 Mg·ha<sup>-1</sup>·y<sup>-1</sup>), into the double cropping soils increased the activities of organic C-, N-, and P-decomposing enzymes and the contents of organic C, total N, and microbial biomass N, as well as the cation exchange capacity, thereby contributing to the enhancement of soil fertility. Also, the compost application increased the degree of water-stable soil macroaggregation (>0.25 mm), which was correlated significantly (r > 0.950, p < 0.05) with the contents of hydrolyzable carbohydrates (with negative charge) and active Al (with positive charge), and resulted in the modification of soil physical properties. Furthermore, the application increased the amount of soil organic matter, including humic acid with a low degree of darkening and fulvic acid, and contributed to C sequestration and storage. Physical fractionation of soil indicated that about 60% of soil organic C was distributed in the silt-sized (2 - 20 μm) aggregate and clay-sized (<2 μm) aggregate fractions, while about 30% existed in the decayed plant fractions (53 - 2000 μm). The results obtained unambiguously indicate that long-term application of compost can improve soil qualities in the field subjected to double cropping, depending on the amount applied.展开更多
文摘Field experiments were conducted to determine the effect of composts prepared from different organic materials with rock phosphate (RP) on yield and P uptake of berseem and their residual effect on maize crop (cv. Azam) during 2011-2012. Composts prepared from RP fed farm yard manure (FYM), simple FYM, organic waste and city garbage were applied at the rate based on their P concentrations. Composts significantly (P ≤ 0.05) increased total dry matter weight of Berseem in first and second cut over control. Residual effect of the prepared composts was determined on yield and plant P uptake of maize in the same layout of Berseem. Maximum and significantly (P ≤ 0.05) higher maize grain yield, total dry matter yield and stover yield of 3161 kg·ha-1, 9633 kg·ha-1 and 6472 kg·ha-1, respectively were recorded by the residual effect of compost of organic waste with half dose of SSP. Thousand grains weight of 220 g was noted in the treatment of residual effect of compost of RP fed FYM with half dose of SSP. Post harvest soil N and P concentrations improved with composting. Significant (P ≤ 0.05) increases in N and P uptake by berseem and maize plants were observed with added composts. Results suggest that the use of composts prepared from different organic materials with RP is environmental friendly and has potential to improve crops yield and plants N and P uptakes for a prolonged time.
文摘The aim of this article was to assess the influence of long-term application of compost on the physical, chemical, and biological properties, as well as the fertility, of soil in a field subjected to double cropping (paddy rice and barley), mainly by integrating previous studies of the effects of compost and manure on soil qualities. Continuous compost application, especially at a high level (30 Mg·ha<sup>-1</sup>·y<sup>-1</sup>), into the double cropping soils increased the activities of organic C-, N-, and P-decomposing enzymes and the contents of organic C, total N, and microbial biomass N, as well as the cation exchange capacity, thereby contributing to the enhancement of soil fertility. Also, the compost application increased the degree of water-stable soil macroaggregation (>0.25 mm), which was correlated significantly (r > 0.950, p < 0.05) with the contents of hydrolyzable carbohydrates (with negative charge) and active Al (with positive charge), and resulted in the modification of soil physical properties. Furthermore, the application increased the amount of soil organic matter, including humic acid with a low degree of darkening and fulvic acid, and contributed to C sequestration and storage. Physical fractionation of soil indicated that about 60% of soil organic C was distributed in the silt-sized (2 - 20 μm) aggregate and clay-sized (<2 μm) aggregate fractions, while about 30% existed in the decayed plant fractions (53 - 2000 μm). The results obtained unambiguously indicate that long-term application of compost can improve soil qualities in the field subjected to double cropping, depending on the amount applied.