The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The pr...The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The present work aims to determine the effect of different rates and mixtutes of organic amendments on soil fertility and the performance of Sunflower (Helianthus annuus L.). In the field, treatments consisted of solid household waste and faecal sludge in the ratios of 3/5 (V1), and a mixture of faecal sludge and household waste in the ratio of 3/5 with 900 worms (V2). At the end of the composting process, V1, V2 composts and the poultry manure (PM) were applied at rates of 4, 5 and 6 t∙ha−1 in a randomized complete block design with three replications. Soil samples were collected before and after the experiment and analyzed. The main results revealed that at the end of the composting process, there was a progressive improvement in the physico-chemical properties of V1 and V2 composts. In particular, the C/N ratio, phosphorus (P) and total nitrogen (TN) initially at 16.49 ± 0.42 (V1, V2), 21.06 ± 0.07 mg∙kg−1 (V1, V2), 0.76% ± 0.08% (V1, V2) respectively, increased after 60 days to 12.40 ± 0.41 (V1), 9.74 ± 0.28 (V2) for C/N, 21.94 ± 0.63 mg∙kg−1 (V1) and 22.04 ± 0.04 mg∙kg−1 (V2) for P, 0.96% ± 0.0% (V1) and 1.22 ± 0.04 (V2) for TN. The application of 6 t∙ha−1of PM had the greatest influence on the diameter and weight of the flower heads (27.16 ± 4.01 t∙ha−1 and 230.83 ± 2.64 t∙ha−1), while 4 t∙ha−1 of V2 gave the tallest sunflower plants (110.07 ± 73.28 cm) as well as the diameter at the crown (19.30 ± 9.07 cm). However, CEC was most influenced by 4 t∙ha−1 of V1, while 4 t∙ha−1 of PM had the greatest effect on organic carbon and phosphorus. However, 5 t∙ha−1 of PM showed the highest sunflower production and yield (1.67 ± 0.21 t∙ha−1). The combination with 900 earthworms is recommended for composting and 5 t∙ha−1 of PM is recommended to obtain a better sunflower production.展开更多
Composts are recognised as an important source of nutrients for crops. The study aims to valorise agricultural by-products by composts made from broiler (A), laying hen (B) and bovine (C) manures in soilless tomato cu...Composts are recognised as an important source of nutrients for crops. The study aims to valorise agricultural by-products by composts made from broiler (A), laying hen (B) and bovine (C) manures in soilless tomato cultivation. Treatments consisted of these three composts and controls consisting of coconut fibres fed with a nutrient solution. The system is a randomised Fisher block with three replications. Each elementary plot consisted of nine tomato plants. Chemical parameters of the substrates and agronomic parameters of the plants were recorded from 14 to 49 days after transplanting (DAT). The pH stabilised at around 6.2 after varying from 7.1 to 8.0 in the composts. The high electrical conductivity (5.9 - 6.01 dS/m) was less than 1 dS/m at 49 DAT. Agromorphological parameters were close to the controls. Fruit necrosis was higher in the compost-based substrates (13.75% - 32.22%) than in the controls (<2%). Healthy fruit yields from the composts (38.7 - 48.7 t/ha) were high, although lower than those from the controls (49.9 - 57.4 t/ha). Fruit harvested from these substrates had a longer average shelf life (38.23 days) than the controls (28.5 days). This study showed that composts have fertilising properties for soilless tomato cultivation, in particular that of laying hen manure (48.33 t/ha). These composts could provide an alternative to the use of chemical fertilisers in soilless tomato cultivation.展开更多
Background: Objectives of this study were to investigate changes of soil carbon contents and to evaluate N mineralization and nitrification rates in soils cooperated with organic composts and biochar during the 2nd ye...Background: Objectives of this study were to investigate changes of soil carbon contents and to evaluate N mineralization and nitrification rates in soils cooperated with organic composts and biochar during the 2nd year corn cultivation. Methods and Results: For the experiment, the soil texture used in this study was clay loam. Application rates of chemical fertilizer were 480-150- 260 kg/ha (N-P2O5-K2O) as recommended amount after soil test. Biochar application was 0.2% to soil weight. The soil samples were periodically taken at every 15-day interval during corn cultivation periods. The treatments were consisted of cow compost (CC), pig compost (PC), swine digestate from aerobic digestion system (AD), and their biochar cooperation. TC contents in treatments cooperated with biochar at harvesting stages were ranged from 0.96% to 1.24%, and its CC applied plot was highest at 1.24%. It was observed that TC contents with biochar treatments were higher than the compost treatment only. Therefore, it was observed to be carbon sequestration into corn field cooperated with biochar. For nitrogen transformation in soil cooperated with organic composts and biochar, net mineralization rates were dramatically decreased at 44 days after sowing, but nitrification rates were abruptly increased at 73 days after sowing. For N mineralization and nitrification rates, it was shown that they were generally low in the soil cooperated with biochar as compared to the only application plots of different organic composts. Also, it was observed to be highest in the application plot of pig compost manure. Conclusion: Overall, application of biochar in the cropland could be an important role for mitigation of greenhouse gas as well as carbon sequestration.展开更多
Many organic materials found in urban areas of sub-Saharan Africa have not been exploited for the development of feedstock specific quality standards of compost especially for use as soilless media. The objective of t...Many organic materials found in urban areas of sub-Saharan Africa have not been exploited for the development of feedstock specific quality standards of compost especially for use as soilless media. The objective of this study was to determine feedstock specific quality standard of compost using referenced stability and maturity indices and establish a simple model for predicting compost maturity based on different feedstock. Two sawdust feedstocks from Daniellia oliveri sawdust (single sawdust) and Daniellia oliveri + Chrysophylum albidum sawdust (mixed sawdust) including one rice husk feedstock were composted individually with poultry manure in three volumetric ratios of 2:1, 3:1 and 4:1. The 2:1 Daniellia oliveri sawdust compost achieved acceptable values for stability and maturity parameter at 8th week, and had the highest nitrogen (N) level (2.46%) and lowest carbon to nitrogen (C:N) ratio (15). In terms of associative relationships for single species sawdust compost, total nitrogen (TN) accounted for 93% of the variation in the C:N content of the compost. In the mixed species sawdust compost, TN explained 87% of the variation in the C:N. Total nitrogen only explained 77% of the variation in the C:N content of the rice husk compost. The study established an empirical relationship between TN and compost maturity and concluded that using stability and maturity indices and their relationships established in this study as standard, compost of higher quality could be obtained within the shortest possible time irrespective of the feedstock used.展开更多
In this work the physical, chemical and microbial properties of four locally composted green waste composts (GWCs) namely Almukhasib, Growers, Plantex, and Super along with four imported GWC (Florabella, Mikskaar, Pot...In this work the physical, chemical and microbial properties of four locally composted green waste composts (GWCs) namely Almukhasib, Growers, Plantex, and Super along with four imported GWC (Florabella, Mikskaar, Potgrond, and Shamrock) were studied to evaluate the quality of these composts with the acceptable standards. All composts showed normal physical properties, except the bad smell from sulfur reducing bacteria in Almukhasib, light brown color Plantex and one viable weed seed in Shamrock compost. The germination indexes of the composts comparable to the standard (90%) were 100% for Mikskaar, followed by Shamrock (92%), Florabella (97), Potgrond (95%), Plantex (98%), Growers (77%), and 5% for both Super and Almukhasib. The physical and chemical properties vary considerably as follows: pH 3 - 10.5, 5.1 - 6.5 (standard 5 - 8), electrical conductivity (EC) 0.4 - 10.2 mS·cm-1, 0.8 - 1.8 mS·cm-1(standard 0.0 - 4.0 mS·cm-1), moisture content (MC%) 29% - 43.7%, 64% - 74% (standard 35% - 60%) and water holding capacity (WHC%) 92% - 200% and 400% - 800% for the locally produced and imported composts, respectively. Wide ranges in the chemical properties were expressed as ammonia concentration 512.4 - 1640.1 mg·kg-1, 459.4 - 656.5 mg·kg-1(standard -1), organic matter 17% - 67.6%, and 53.3% - 66.2% (standard 35%) for the locally composted and imported composts, respectively. The concentrations of the heavy metals (Zn, Ni, Pb, Hg, As, Cd, and Cr) were lower than the recommended levels. The average of the bacterial colony forming unit per gram of locally produced and imported composts ranged between 260 - 1740 CFU/g and 330 - 2870 CFU/g, whereas the fungal CFU were 10 - 2800 CFU/g and 27 - 1800 CFU/g, respectively. The most probable number (MPN) for coliform bacteria was 43 - 1100 CFU/g for locally produced composts, and 23 - 480 CFU/g for the imported composts. Therefore, these composts can not be used directly without effective treatment as substrate for plant growth, soil amendment and as biofertilizer.展开更多
Peculiar characteristics of soils of Zarafshan valley are salinity with carbonates. It is recommended to introduce large amount of manure or other organic fertilizers in these soils to improve soil reclamation. But cu...Peculiar characteristics of soils of Zarafshan valley are salinity with carbonates. It is recommended to introduce large amount of manure or other organic fertilizers in these soils to improve soil reclamation. But currently there is no possibility to collect so many organic fertilizers in Uzbekistan. That is why other ways of production of organic fertilizers for improving soil fertility were searched. In the experiment, the influence of composts was studied, which prepared from tobacco wastes and manure on agrochemical properties of soils of Zarafshan valley, and production of composts from these industrial wastes, two salted with magnesium carbonates and yield-capacity of com. With the problems that exist in Uzbekistan can be solved at once. These include problems of environmental contamination through wastes and ensuring with organic fertilizers in the irrigated soils. Introduction of composts in the doze of 30 t.ha1 separately and on the background of mineral-NPK (nitrogen, phosphorus and potassium) fertilizers increased the humus content, total NPK and mobile nutritious substances in soil. It is proved that composts, prepared from tobacco wastes with their effect on the yield capacity and quality ofcoru production, can successfully substitute manure. Composts positively influence on the balance of nutritious substances in the system of soil-corn.展开更多
Combining compost with sufficient chemical N fertilizer (CF) in agricultural lands is a popular practice to reduce the amount of inorganic nitrogen and accumulation of non-nutrient constituents in soils. A pot culture...Combining compost with sufficient chemical N fertilizer (CF) in agricultural lands is a popular practice to reduce the amount of inorganic nitrogen and accumulation of non-nutrient constituents in soils. A pot culture experiment was conducted to study the effects of 130 mg N of either solids waste compost (Scomp) or biosolids waste compost (Bcomp) complemented with 130 mg (CF, 1N) and 260 mg·N·pot-1 (CF, 2N) as 15N labeled (NH4)2SO4 (13.172 atom %) on growth and N uptake by Italian ryegrass. A separate soil incubation without plants was set up by only blends of Scomp and CF. The results from pot culture experiment show that total plant biomass and N uptake from Bcomp were significantly higher than Scomp alone. Scomp combined with CF improved yield and N uptake over those of Scomp alone. For Scomp + 1N treatment, plant nitrogen uptake derived from compost and CF accounted for 29% and 56% of added N from Scomp and CF, respectively. The incubation study indicates that 16.08 - 29.62 mg·N·kg-1·soil·day-1 from inorganic-N were immobilized into organic pools, while only 0.40 - 0.66 mg·N·kg-1·soil·day-1 from organic-N were mineralized to inorganic pools. Because a part of additional N could be tied up in organic form, combining solids compost with chemical N fertilizer therefore need to consider the effective use of compost-N.展开更多
Background: The objective of this study was to estimate the carbon sequestration in soils cooperated with organic composts and bio-char during corn cultivation. Methods and Results: For the experiment, the soil textur...Background: The objective of this study was to estimate the carbon sequestration in soils cooperated with organic composts and bio-char during corn cultivation. Methods and Results: For the experiment, the soil texture used in this study was clay loam, and application rates of chemical fertilizer and bio-char were 230-107-190 kg·ha-1 (N-P2O5-K2O) as recommended amount after soil test and 0.2% to soil weight. The soil samples were periodically taken at every 15-day intervals during the experimental periods. The treatments consisted of cow compost, pig compost, swine digestate from aerobic digestion system, and their bio-char cooperation. For estimating soil C sequestration, it is determined by the net balance between carbon inputs and outputs during corn cultivation periods. For the experimental results, it found that applications of aerobic swine digestate, cow compost, and pig compost could sequester C by 38.9%, 82.2% and 19.7% in soil, respectively, when bio-char from rice hulls was cooperated with soil. For plant responses, application of bio-char in the corn field for carbon sequestration was not occurred the damage of corn growth. Conclusion: When bio-char from rice hulls was cooperated with soil, applications of aerobic swine digestate, cow compost, and pig compost could sequester C by 38.9%, 82.2% and 19.7% in soil, respectively. Therefore, addition of bio-char with organic composts could have a potential soil C sequestration in agricultural practices.展开更多
This work presents the physicochemical and mineral analysis of compost samples made from waste materials of cassava, vegetable, banana, orange, and cow dung fortified each with 100g of NPK, 100g of kaolin and 100g of ...This work presents the physicochemical and mineral analysis of compost samples made from waste materials of cassava, vegetable, banana, orange, and cow dung fortified each with 100g of NPK, 100g of kaolin and 100g of ammonium chloride. Microbial analysis of the fresh compost samples revealed that the unfortified compost possesses more microbial load than the fortified samples. The physicochemical analysis showed that the kaolin fortified compost (KFC) has the highest ash content and phosphorus content while the unfortified compost (UC) contains the highest organic matter. All the compost samples have little nitrogen when compared with NPK chemical fertilizer. However, the fortification with kaolin, NPK and ammonium chloride increased the percentage of nitrogen over that of the unfortified compost by 38.8%, 56.23%, and 71.17% respectively. The fortification with kaolin, NPK, and ammonium chloride also increased the phosphorus content over that of the unfortified by 56.31%, 53.21% and 36.75%, respectively. The result of the mineral content showed that the fortification with NPK and ammonium chloride increased the magnesium content of the compost sample while fortification with kaolin increases the magnesium and calcium content. The nitrate and sulfate contents are reduced by the fortification with kaolin, NPK and ammonium chloride.展开更多
This study was conducted in context to preserve tomato healthiness and to improve its yield in field.It aimed to assess some effects of non-aerated sheep manure and water jacinthe(Eichhornia crassipes)composts teas.It...This study was conducted in context to preserve tomato healthiness and to improve its yield in field.It aimed to assess some effects of non-aerated sheep manure and water jacinthe(Eichhornia crassipes)composts teas.It specifically consisted to evaluate two teas effects on tomato’s:(a)A.solani foliar disease,(b)yield and(c)mycorrhization intensity.The experiments were conducted according to completely randomized Fisher block with four repetitions.Three treatments were considered:plants receiving non-aerated sheep manure compost tea(TCFM),plants receiving non-aerated water jacinthe compost tea(TCJE),and control plants(T0)without compost tea application.The experiments were repeated twice.Teas application started at four-leaf stage of tomato plants.It was weekly and insured by manual foliar spraying and watering of the plants.To determine the preventive suppressive effects of compost teas,three days after its initial application,plants were artificially inoculated by foliar spraying with Alternaria solani sporal suspension.Data were analyzed with R software.Tukey Contrasts test at 5%threshold was used to compare means.Results showed that TCFM was the most suppressive on A.solani and also had enhanced tomato yield in field.Both teas did not have a meaningful effect on tomato mycorrhization intensity.These results showed that TCFM can serve as biopesticide and biofertilizer in tomato culture.展开更多
Several methods have been developed in the literature which allow the maturity of composts to be assessed before it is used in agriculture. The objective of this study is to assess the maturity of the composts produce...Several methods have been developed in the literature which allow the maturity of composts to be assessed before it is used in agriculture. The objective of this study is to assess the maturity of the composts produced at the platform of the NGO ENPRO in Lomé on the growth and agronomic parameters of maize (<i>Zea mays</i> L., var. IKENE). To do so, three types of compost (gargabe, fruit waste, animal litter) were made for at least 3 months. The chemical analysis, phytotoxicity and agronomic tests carried out made it possible to assess the maturity of these composts. Indeed, the evolution of the C/N ratio, of the electrical conductivity, the phytotoxicity tests and the growth parameters of the composts show that the composts N°1 and N°2 are mature at the end of the 3<sup>rd</sup> month of composting while the compost N°3 can only be considered mature at the end of the 5<sup>th</sup> month of composting. But, with a yield of 2.39 ± 0.28 t/ha and a mass of 1000 grains of 346 ± 4 g, the treatment at 5 t/ha of compost N°3, has the best agronomic parameters compared to other types of compost and treatment without organic amendment. These results also show that compost with a high electrical conductivity has an inhibitory effect on the growth of corn plants (<i>Zea mays</i> L., var. IKENE). Basic chemical analysis, phytotoxicity tests and height growth of maize (<i>Zea mays</i> L., var. IKENE) are relatively efficient methods for evaluating the maturity of composts.展开更多
Despite the ability of biochar to enhance soil fertility and to sequester soil carbon, its potential reduction of green house gas emissions and profit analysis with different organic composts and cooperated with bioch...Despite the ability of biochar to enhance soil fertility and to sequester soil carbon, its potential reduction of green house gas emissions and profit analysis with different organic composts and cooperated with biochar for crop cultivation have been a few evaluated. This study was conducted to estimate their greenhouse gas emission reduction and profit analysis by soil carbon sequestration with different organic composts and cooperated with biochar application during corn cultivation periods. For the experiment, the treatments were consisted of aerobic digestate of swine wastes (AD), pig compost as the control (PC), cow compost (CC) and pig compost cooperated with 1% biochar (PC + 1% biochar). The soil texture used in this study was sandy loam, and application rates of chemical fertilizer were 190-39-221 kg·ha<sup>-1</sup> (N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O) as recommended amount after soil test. The soil samples were periodically taken at every 15 day intervals during the experimental periods. It was observed that soil carbon sequestration by AD, CC and PC + 1% biochar application was estimated to be 429 kg·ha<sup>-1</sup>, 2366 kg·ha<sup>-1</sup>, and 3978 kg·ha<sup>-1</sup>, and their CO<sub>2</sub>-e emission reductions were estimated to be 0.16 tones for AD, 0.87 tones for CC, and 14.58 tones for PC + 1% biochar per hectar for corn cultivation periods. Their profits were estimated at $14.58 for lowest and $451.90 for highest. In Korea Climate Exchange, it was estimated to be $115.20 per hectar of corn cultivation with PC + 1% biochar. So, the price of CO<sub>2</sub> per hectar for corn cultivation with PC + 1% biochar was high at 16.8 times relative to cow compost treatment only. For the plant growth response, it was observed that plant height and fresh ear yield were not significantly different among the treatments. Therefore, these experimental results might be fundamental data for assuming a carbon trading mechanism exists for biochar soil application in agricultural practices.展开更多
Dissolved organic matter(DOM)derived from various composts can promote significant changes of soil properties.However,little is known about the DOM compositions and their similarities and differences at the molecular ...Dissolved organic matter(DOM)derived from various composts can promote significant changes of soil properties.However,little is known about the DOM compositions and their similarities and differences at the molecular level.In this study,the molecular compositions of DOM derived from kitchen waste compost(KWC),green waste compost(GWC),manure waste compost(MWC),and sewage sludge compost(SSC)were characterized by electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry(ESI FT-ICR MS).The molecular formulas were classified into four subcategories:CHO,CHON,CHOS,and CHONS.The KWC,MWC,and SSC DOM represented the highest fraction(35.8%-47.4%)of CHON subcategory,while the GWC DOM represented the highest fraction(68.4%)of CHO subcategory.The GWC DOM was recognized as the nitrogen-and sulfurdeficient compounds that were less saturated,more aromatic,and more oxidized compared with other samples.Further analysis of the oxygen,nitrogen-containing(N-containing),and sulfur-containing(S-containing)functional groups in the four subcategories revealed higher organic molecular complexity.Comparison of the similarities and differences of the four samples revealed 22.8%ubiquitous formulas and 17.4%,11.1%,10.7%,and 6.3%unique formulas of GWC,KWC,SSC,and MWC DOM,respectively,suggesting a large proportion of ubiquitous DOM as well as unique,source-specific molecular signatures.The findings presented herein provide new insight into the molecular characterization of DOM derived from various composts and demonstrated the potential role of these different compounds for agricultural utilization.展开更多
The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the curre...The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the current waste collection system in Guinea has proved inadequate, as moving garbage from point “A” to point “B” is tantamount to “moving the problem”. The aim of this experimental work is to demonstrate the cost-effectiveness and benefits of sustainable waste management. As part of this drive to valorize biodegradable waste, the Waste Management Research Center has undertaken a series of activities ranging from composting organic waste to testing compost on certain crop varieties. An experimental field of 8024 m2 was laid out and treated with 1500 Kg of fine compost in doses ranging from 2.5 to 5 T/ha. Two crop varieties, eggplant and chili, were tested. Compost application increased production yields: 15 to 21 tonnes of eggplant and 10.4 to 11.1 tonnes of chili per hectare. Growth rates compared with usual yields varied from 50% to 64% and from 11% to 17% for eggplant and chili, respectively. This study resulted in an optimum compost dose of 2.5 T/ha for this phase.展开更多
Conventional agricultural techniques have been degrading American soils nationwide since the beginnings of modern-day agriculture through practices such as soil tilling, using nitrogen synthetic fertilizers, and monoc...Conventional agricultural techniques have been degrading American soils nationwide since the beginnings of modern-day agriculture through practices such as soil tilling, using nitrogen synthetic fertilizers, and monocultural systems. These techniques contribute to degrading soil health, mass emissions of carbon dioxide into the atmosphere, and decreased biodiversity. Regenerative agriculture techniques include the utilization of cover crops, compost, no-tillage, the integration of livestock, and crop rotation. The APS Laboratory for Sustainable Agriculture focused on the effectiveness of compost by comparing the growth of lettuce in four different treatments: 100% Compost (100%C), 75% Compost 25% Miracle-Gro (75%C - 25%MG), 50% Compost 50% Miracle-Gro (50%C - 50%MG), and finally, 100% Miracle-Gro (100%MG). The lettuce seeds were kept in a growth tent for fifteen days during their period of germination before being transferred to four 1 × 1 × 0.15 m plots in the Food Forest at Florida Gulf Coast University (FGCU) for the 60-day growth period. The lettuce crops grew to full bloom and were ready for harvest. Sampling events took place every six days in which crop growth data including wet weight (g), dry weight (g), nitrogen (mg/g), chlorophyll concentration (mg/cm2), and leaf area (LA) (cm2) were collected. Statistical analysis was then conducted from the data. Based on the statistical tests conducted at the 5% significance level using R statistical software, soil treatment type was found to be significant (p = 0.0002). Soil treatment type was shown to have significantly impacted wet weight (p χ2 [3] = 3.91, p = 0.2717). 100%C and 100%MG of soil treatments produced the most successful lettuce crops. The 100%C soil treatment yielded lettuce crops with the heaviest wet weights and the largest LAs, and the 100% MG soil treatment yielded the heaviest dry weights and the highest nitrogen readings. Results demonstrate the effectiveness and feasibility of using compost as a technique for regenerative agriculture.展开更多
Twelve percent (12%) of Ghanaians are food insecure, and climate-smart crops like sweet potatoes are required to help end poverty. Small-scale farmers in Ghana who produce low-technology, subsistence crops, such as sw...Twelve percent (12%) of Ghanaians are food insecure, and climate-smart crops like sweet potatoes are required to help end poverty. Small-scale farmers in Ghana who produce low-technology, subsistence crops, such as sweet potatoes, are more food secure than those who do not. This study was initiated to investigate the effect of chicken manure, compost, and cow dung on the growth and yield of “apomuden”, “SARI-Nyoriberigu”, “SARI-Nan” and “kufour” sweet potato under the Guinea Savannah agroecological zone of Ghana. Organic fertilizer increased leaf chlorophyll content and leaf area index. The application of cow dung, chicken manure and compost in 2015 significantly increased total storage root yield by 38%, 55% and 98%, 62%, 45% and 37%, 52%, 61% and 44%, and 33%, 36% and 28% for SARI-Nyoriberigu, Kufour, SARI-Nan and Apomuden, respectively, when compared to the untreated check. In 2016, and in comparison with the untreated check, the application of cow dung, chicken manure and compost increased total storage root yield by 42%, 61% and 93%, 69%, 49% and 41%, 57%, 67% and 48%, and 36%, 39% and 30% for SARI-Nyoriberigu, Kufour, SARI-Nan and Apomuden, respectively. Hence, the application of organic fertilizers will increase sweet potato yield, give higher returns to resource-poor smallholder farmers and contribute to enhancing food and nutrition security.展开更多
Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed ...Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed the split-additions of nitrogen-rich substrate to composting materials and their effect on GHGs emissions as well as the quality of the composts. Nitrogen-rich substrates formulated from pig and goat manure were co-composted with MSW for a 12-weeks period by split adding at mesophilic (˚C) and thermophilic (>50˚C) stages in five different treatments. Representative samples from the compost were taken from each treatment for physicochemical, heavy metals and bacteriological analysis. In-situ CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O gas emissions were also analyzed weekly during composting. It was observed that all the treatments showed significant organic matter decomposition, reaching thermophilic temperatures in the first week of composting. The absence affects the suitable agronomic properties. All nitrogen-rich substrate applied at thermophilic stage (Treatment two) recorded the highest N, P and K concentrations of 1.34%, 0.97% and 2.45%, respectively with highest nitrogen retention. In terms of GHG emissions, CO<sub>2</sub> was highest at the thermophilic stage when N-rich substrate was added in all treatment, while CH<sub>4</sub> was highest in the mesophilic stage with N-rich substrate addition. N<sub>2</sub>O showed no specific trend in the treatments. Split addition of the N-rich substrate for co-composting of MSW produced compost which is stable, has less nutrient loss and low GHG emissions. Split addition of a nitrogen-rich substrate could be an option for increasing the fertilizer value of MSW compost.展开更多
Waste management is crucial due to the fast increase of human population, causing an increase in solid waste generation which if not properly managed causes environmental problems. Around 57% of the wastes generated f...Waste management is crucial due to the fast increase of human population, causing an increase in solid waste generation which if not properly managed causes environmental problems. Around 57% of the wastes generated from homes are made up of green material (fruits, vegetables…). Thus, reusing and recycling green wastes through composting is one way of reducing the waste load to landfills. Composting is the transformation of raw organic materials into organic soil amendments that provide nutrients to crops and enhance the tilth, fertility, and productivity of soils. Aerobic windrow composting system at Sukomi Greensite facility located at Karantina is performed, where materials biodegrade under controlled conditions to produce compost. However, assessment of the quality of the compost is fundamental in order to determine its usages. Thus, regular testing of physical, chemical and biological parameters was performed for adequate monitoring purposes. The basic objective of this study was to determine the characteristics of the Lebanese municipal solid waste compost on a yearly basis and compare these characteristics amongst the years. Hence, each parameter was tested and compared to the BNQ international Canadian standards for proper classification of the compost and adequate identification of its usages. The preliminary data obtained were statistically diagnosed through principal component analysis by Spadv55 software. All the data reflected the normal content value of the studied parameters with minor differences between the years except for year 2007 which demonstrated higher levels of Potassium, Phosphate, Lead and Cadmium. The characteristics of the compost enabled it to be used as a soil amendment on all types of agricultural and landscape commodities at the adequate dosages and proper timing. This data will additionally reflect the efficiency of the solid waste management practices adopted via highlighting the importance of the implementation of the integrated solid waste management practices.展开更多
Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishm...Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites.展开更多
[Objective] The aim of this study was to explore the sterilization effects on Escherichia coli by adding bacterial inhibitor(CaCN2)during the process of cattle manure composting so as to provide a theoretical basis fo...[Objective] The aim of this study was to explore the sterilization effects on Escherichia coli by adding bacterial inhibitor(CaCN2)during the process of cattle manure composting so as to provide a theoretical basis for cattle manure harmless treatment.[Method] Both experimental groups supplemented with 2.0% bacterial inhibitor and control groups without bacterial inhibitor were cultured under different temperatures(20,30,37,50,60 ℃)to determine the optimal composing temperature.Under 30 ℃,different bacterial inhibitor doses(0,2.0%,2.5%,3.0%)were added into the compost to obtain the optimal bacterial inhibitor addition dose.[Result] 30,50 and 60 ℃ were ideal temperatures for sterilization of E.coli.Under 30 ℃,E.coli couldn't be detected in 2.5% dose group and 3.0% dose group after culture for 48 h,demonstrating no less than 2.5% bacterial inhibitor should be added.[Conclusion] It has an important significance to enhance the sterilization effects on E.coli by adding CaCN2 into cattle manure compost especially in winter.展开更多
文摘The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The present work aims to determine the effect of different rates and mixtutes of organic amendments on soil fertility and the performance of Sunflower (Helianthus annuus L.). In the field, treatments consisted of solid household waste and faecal sludge in the ratios of 3/5 (V1), and a mixture of faecal sludge and household waste in the ratio of 3/5 with 900 worms (V2). At the end of the composting process, V1, V2 composts and the poultry manure (PM) were applied at rates of 4, 5 and 6 t∙ha−1 in a randomized complete block design with three replications. Soil samples were collected before and after the experiment and analyzed. The main results revealed that at the end of the composting process, there was a progressive improvement in the physico-chemical properties of V1 and V2 composts. In particular, the C/N ratio, phosphorus (P) and total nitrogen (TN) initially at 16.49 ± 0.42 (V1, V2), 21.06 ± 0.07 mg∙kg−1 (V1, V2), 0.76% ± 0.08% (V1, V2) respectively, increased after 60 days to 12.40 ± 0.41 (V1), 9.74 ± 0.28 (V2) for C/N, 21.94 ± 0.63 mg∙kg−1 (V1) and 22.04 ± 0.04 mg∙kg−1 (V2) for P, 0.96% ± 0.0% (V1) and 1.22 ± 0.04 (V2) for TN. The application of 6 t∙ha−1of PM had the greatest influence on the diameter and weight of the flower heads (27.16 ± 4.01 t∙ha−1 and 230.83 ± 2.64 t∙ha−1), while 4 t∙ha−1 of V2 gave the tallest sunflower plants (110.07 ± 73.28 cm) as well as the diameter at the crown (19.30 ± 9.07 cm). However, CEC was most influenced by 4 t∙ha−1 of V1, while 4 t∙ha−1 of PM had the greatest effect on organic carbon and phosphorus. However, 5 t∙ha−1 of PM showed the highest sunflower production and yield (1.67 ± 0.21 t∙ha−1). The combination with 900 earthworms is recommended for composting and 5 t∙ha−1 of PM is recommended to obtain a better sunflower production.
文摘Composts are recognised as an important source of nutrients for crops. The study aims to valorise agricultural by-products by composts made from broiler (A), laying hen (B) and bovine (C) manures in soilless tomato cultivation. Treatments consisted of these three composts and controls consisting of coconut fibres fed with a nutrient solution. The system is a randomised Fisher block with three replications. Each elementary plot consisted of nine tomato plants. Chemical parameters of the substrates and agronomic parameters of the plants were recorded from 14 to 49 days after transplanting (DAT). The pH stabilised at around 6.2 after varying from 7.1 to 8.0 in the composts. The high electrical conductivity (5.9 - 6.01 dS/m) was less than 1 dS/m at 49 DAT. Agromorphological parameters were close to the controls. Fruit necrosis was higher in the compost-based substrates (13.75% - 32.22%) than in the controls (<2%). Healthy fruit yields from the composts (38.7 - 48.7 t/ha) were high, although lower than those from the controls (49.9 - 57.4 t/ha). Fruit harvested from these substrates had a longer average shelf life (38.23 days) than the controls (28.5 days). This study showed that composts have fertilising properties for soilless tomato cultivation, in particular that of laying hen manure (48.33 t/ha). These composts could provide an alternative to the use of chemical fertilisers in soilless tomato cultivation.
文摘Background: Objectives of this study were to investigate changes of soil carbon contents and to evaluate N mineralization and nitrification rates in soils cooperated with organic composts and biochar during the 2nd year corn cultivation. Methods and Results: For the experiment, the soil texture used in this study was clay loam. Application rates of chemical fertilizer were 480-150- 260 kg/ha (N-P2O5-K2O) as recommended amount after soil test. Biochar application was 0.2% to soil weight. The soil samples were periodically taken at every 15-day interval during corn cultivation periods. The treatments were consisted of cow compost (CC), pig compost (PC), swine digestate from aerobic digestion system (AD), and their biochar cooperation. TC contents in treatments cooperated with biochar at harvesting stages were ranged from 0.96% to 1.24%, and its CC applied plot was highest at 1.24%. It was observed that TC contents with biochar treatments were higher than the compost treatment only. Therefore, it was observed to be carbon sequestration into corn field cooperated with biochar. For nitrogen transformation in soil cooperated with organic composts and biochar, net mineralization rates were dramatically decreased at 44 days after sowing, but nitrification rates were abruptly increased at 73 days after sowing. For N mineralization and nitrification rates, it was shown that they were generally low in the soil cooperated with biochar as compared to the only application plots of different organic composts. Also, it was observed to be highest in the application plot of pig compost manure. Conclusion: Overall, application of biochar in the cropland could be an important role for mitigation of greenhouse gas as well as carbon sequestration.
文摘Many organic materials found in urban areas of sub-Saharan Africa have not been exploited for the development of feedstock specific quality standards of compost especially for use as soilless media. The objective of this study was to determine feedstock specific quality standard of compost using referenced stability and maturity indices and establish a simple model for predicting compost maturity based on different feedstock. Two sawdust feedstocks from Daniellia oliveri sawdust (single sawdust) and Daniellia oliveri + Chrysophylum albidum sawdust (mixed sawdust) including one rice husk feedstock were composted individually with poultry manure in three volumetric ratios of 2:1, 3:1 and 4:1. The 2:1 Daniellia oliveri sawdust compost achieved acceptable values for stability and maturity parameter at 8th week, and had the highest nitrogen (N) level (2.46%) and lowest carbon to nitrogen (C:N) ratio (15). In terms of associative relationships for single species sawdust compost, total nitrogen (TN) accounted for 93% of the variation in the C:N content of the compost. In the mixed species sawdust compost, TN explained 87% of the variation in the C:N. Total nitrogen only explained 77% of the variation in the C:N content of the rice husk compost. The study established an empirical relationship between TN and compost maturity and concluded that using stability and maturity indices and their relationships established in this study as standard, compost of higher quality could be obtained within the shortest possible time irrespective of the feedstock used.
文摘In this work the physical, chemical and microbial properties of four locally composted green waste composts (GWCs) namely Almukhasib, Growers, Plantex, and Super along with four imported GWC (Florabella, Mikskaar, Potgrond, and Shamrock) were studied to evaluate the quality of these composts with the acceptable standards. All composts showed normal physical properties, except the bad smell from sulfur reducing bacteria in Almukhasib, light brown color Plantex and one viable weed seed in Shamrock compost. The germination indexes of the composts comparable to the standard (90%) were 100% for Mikskaar, followed by Shamrock (92%), Florabella (97), Potgrond (95%), Plantex (98%), Growers (77%), and 5% for both Super and Almukhasib. The physical and chemical properties vary considerably as follows: pH 3 - 10.5, 5.1 - 6.5 (standard 5 - 8), electrical conductivity (EC) 0.4 - 10.2 mS·cm-1, 0.8 - 1.8 mS·cm-1(standard 0.0 - 4.0 mS·cm-1), moisture content (MC%) 29% - 43.7%, 64% - 74% (standard 35% - 60%) and water holding capacity (WHC%) 92% - 200% and 400% - 800% for the locally produced and imported composts, respectively. Wide ranges in the chemical properties were expressed as ammonia concentration 512.4 - 1640.1 mg·kg-1, 459.4 - 656.5 mg·kg-1(standard -1), organic matter 17% - 67.6%, and 53.3% - 66.2% (standard 35%) for the locally composted and imported composts, respectively. The concentrations of the heavy metals (Zn, Ni, Pb, Hg, As, Cd, and Cr) were lower than the recommended levels. The average of the bacterial colony forming unit per gram of locally produced and imported composts ranged between 260 - 1740 CFU/g and 330 - 2870 CFU/g, whereas the fungal CFU were 10 - 2800 CFU/g and 27 - 1800 CFU/g, respectively. The most probable number (MPN) for coliform bacteria was 43 - 1100 CFU/g for locally produced composts, and 23 - 480 CFU/g for the imported composts. Therefore, these composts can not be used directly without effective treatment as substrate for plant growth, soil amendment and as biofertilizer.
文摘Peculiar characteristics of soils of Zarafshan valley are salinity with carbonates. It is recommended to introduce large amount of manure or other organic fertilizers in these soils to improve soil reclamation. But currently there is no possibility to collect so many organic fertilizers in Uzbekistan. That is why other ways of production of organic fertilizers for improving soil fertility were searched. In the experiment, the influence of composts was studied, which prepared from tobacco wastes and manure on agrochemical properties of soils of Zarafshan valley, and production of composts from these industrial wastes, two salted with magnesium carbonates and yield-capacity of com. With the problems that exist in Uzbekistan can be solved at once. These include problems of environmental contamination through wastes and ensuring with organic fertilizers in the irrigated soils. Introduction of composts in the doze of 30 t.ha1 separately and on the background of mineral-NPK (nitrogen, phosphorus and potassium) fertilizers increased the humus content, total NPK and mobile nutritious substances in soil. It is proved that composts, prepared from tobacco wastes with their effect on the yield capacity and quality ofcoru production, can successfully substitute manure. Composts positively influence on the balance of nutritious substances in the system of soil-corn.
文摘Combining compost with sufficient chemical N fertilizer (CF) in agricultural lands is a popular practice to reduce the amount of inorganic nitrogen and accumulation of non-nutrient constituents in soils. A pot culture experiment was conducted to study the effects of 130 mg N of either solids waste compost (Scomp) or biosolids waste compost (Bcomp) complemented with 130 mg (CF, 1N) and 260 mg·N·pot-1 (CF, 2N) as 15N labeled (NH4)2SO4 (13.172 atom %) on growth and N uptake by Italian ryegrass. A separate soil incubation without plants was set up by only blends of Scomp and CF. The results from pot culture experiment show that total plant biomass and N uptake from Bcomp were significantly higher than Scomp alone. Scomp combined with CF improved yield and N uptake over those of Scomp alone. For Scomp + 1N treatment, plant nitrogen uptake derived from compost and CF accounted for 29% and 56% of added N from Scomp and CF, respectively. The incubation study indicates that 16.08 - 29.62 mg·N·kg-1·soil·day-1 from inorganic-N were immobilized into organic pools, while only 0.40 - 0.66 mg·N·kg-1·soil·day-1 from organic-N were mineralized to inorganic pools. Because a part of additional N could be tied up in organic form, combining solids compost with chemical N fertilizer therefore need to consider the effective use of compost-N.
文摘Background: The objective of this study was to estimate the carbon sequestration in soils cooperated with organic composts and bio-char during corn cultivation. Methods and Results: For the experiment, the soil texture used in this study was clay loam, and application rates of chemical fertilizer and bio-char were 230-107-190 kg·ha-1 (N-P2O5-K2O) as recommended amount after soil test and 0.2% to soil weight. The soil samples were periodically taken at every 15-day intervals during the experimental periods. The treatments consisted of cow compost, pig compost, swine digestate from aerobic digestion system, and their bio-char cooperation. For estimating soil C sequestration, it is determined by the net balance between carbon inputs and outputs during corn cultivation periods. For the experimental results, it found that applications of aerobic swine digestate, cow compost, and pig compost could sequester C by 38.9%, 82.2% and 19.7% in soil, respectively, when bio-char from rice hulls was cooperated with soil. For plant responses, application of bio-char in the corn field for carbon sequestration was not occurred the damage of corn growth. Conclusion: When bio-char from rice hulls was cooperated with soil, applications of aerobic swine digestate, cow compost, and pig compost could sequester C by 38.9%, 82.2% and 19.7% in soil, respectively. Therefore, addition of bio-char with organic composts could have a potential soil C sequestration in agricultural practices.
文摘This work presents the physicochemical and mineral analysis of compost samples made from waste materials of cassava, vegetable, banana, orange, and cow dung fortified each with 100g of NPK, 100g of kaolin and 100g of ammonium chloride. Microbial analysis of the fresh compost samples revealed that the unfortified compost possesses more microbial load than the fortified samples. The physicochemical analysis showed that the kaolin fortified compost (KFC) has the highest ash content and phosphorus content while the unfortified compost (UC) contains the highest organic matter. All the compost samples have little nitrogen when compared with NPK chemical fertilizer. However, the fortification with kaolin, NPK and ammonium chloride increased the percentage of nitrogen over that of the unfortified compost by 38.8%, 56.23%, and 71.17% respectively. The fortification with kaolin, NPK, and ammonium chloride also increased the phosphorus content over that of the unfortified by 56.31%, 53.21% and 36.75%, respectively. The result of the mineral content showed that the fortification with NPK and ammonium chloride increased the magnesium content of the compost sample while fortification with kaolin increases the magnesium and calcium content. The nitrate and sulfate contents are reduced by the fortification with kaolin, NPK and ammonium chloride.
基金We thank the Ministry of High Education and Scientific Research of Mali,and the Laval University of Quebec for financing this studyWe also thank the Rural Polytechnic Institute(IPR/IFRA)of Mali for collaboration.
文摘This study was conducted in context to preserve tomato healthiness and to improve its yield in field.It aimed to assess some effects of non-aerated sheep manure and water jacinthe(Eichhornia crassipes)composts teas.It specifically consisted to evaluate two teas effects on tomato’s:(a)A.solani foliar disease,(b)yield and(c)mycorrhization intensity.The experiments were conducted according to completely randomized Fisher block with four repetitions.Three treatments were considered:plants receiving non-aerated sheep manure compost tea(TCFM),plants receiving non-aerated water jacinthe compost tea(TCJE),and control plants(T0)without compost tea application.The experiments were repeated twice.Teas application started at four-leaf stage of tomato plants.It was weekly and insured by manual foliar spraying and watering of the plants.To determine the preventive suppressive effects of compost teas,three days after its initial application,plants were artificially inoculated by foliar spraying with Alternaria solani sporal suspension.Data were analyzed with R software.Tukey Contrasts test at 5%threshold was used to compare means.Results showed that TCFM was the most suppressive on A.solani and also had enhanced tomato yield in field.Both teas did not have a meaningful effect on tomato mycorrhization intensity.These results showed that TCFM can serve as biopesticide and biofertilizer in tomato culture.
文摘Several methods have been developed in the literature which allow the maturity of composts to be assessed before it is used in agriculture. The objective of this study is to assess the maturity of the composts produced at the platform of the NGO ENPRO in Lomé on the growth and agronomic parameters of maize (<i>Zea mays</i> L., var. IKENE). To do so, three types of compost (gargabe, fruit waste, animal litter) were made for at least 3 months. The chemical analysis, phytotoxicity and agronomic tests carried out made it possible to assess the maturity of these composts. Indeed, the evolution of the C/N ratio, of the electrical conductivity, the phytotoxicity tests and the growth parameters of the composts show that the composts N°1 and N°2 are mature at the end of the 3<sup>rd</sup> month of composting while the compost N°3 can only be considered mature at the end of the 5<sup>th</sup> month of composting. But, with a yield of 2.39 ± 0.28 t/ha and a mass of 1000 grains of 346 ± 4 g, the treatment at 5 t/ha of compost N°3, has the best agronomic parameters compared to other types of compost and treatment without organic amendment. These results also show that compost with a high electrical conductivity has an inhibitory effect on the growth of corn plants (<i>Zea mays</i> L., var. IKENE). Basic chemical analysis, phytotoxicity tests and height growth of maize (<i>Zea mays</i> L., var. IKENE) are relatively efficient methods for evaluating the maturity of composts.
文摘Despite the ability of biochar to enhance soil fertility and to sequester soil carbon, its potential reduction of green house gas emissions and profit analysis with different organic composts and cooperated with biochar for crop cultivation have been a few evaluated. This study was conducted to estimate their greenhouse gas emission reduction and profit analysis by soil carbon sequestration with different organic composts and cooperated with biochar application during corn cultivation periods. For the experiment, the treatments were consisted of aerobic digestate of swine wastes (AD), pig compost as the control (PC), cow compost (CC) and pig compost cooperated with 1% biochar (PC + 1% biochar). The soil texture used in this study was sandy loam, and application rates of chemical fertilizer were 190-39-221 kg·ha<sup>-1</sup> (N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O) as recommended amount after soil test. The soil samples were periodically taken at every 15 day intervals during the experimental periods. It was observed that soil carbon sequestration by AD, CC and PC + 1% biochar application was estimated to be 429 kg·ha<sup>-1</sup>, 2366 kg·ha<sup>-1</sup>, and 3978 kg·ha<sup>-1</sup>, and their CO<sub>2</sub>-e emission reductions were estimated to be 0.16 tones for AD, 0.87 tones for CC, and 14.58 tones for PC + 1% biochar per hectar for corn cultivation periods. Their profits were estimated at $14.58 for lowest and $451.90 for highest. In Korea Climate Exchange, it was estimated to be $115.20 per hectar of corn cultivation with PC + 1% biochar. So, the price of CO<sub>2</sub> per hectar for corn cultivation with PC + 1% biochar was high at 16.8 times relative to cow compost treatment only. For the plant growth response, it was observed that plant height and fresh ear yield were not significantly different among the treatments. Therefore, these experimental results might be fundamental data for assuming a carbon trading mechanism exists for biochar soil application in agricultural practices.
基金the GDAS’Project of Science and Technology Development(No.2019GDASYL-0501005)the Natural Science Foundation of Guangdong Province(No.2018A030310084)+1 种基金a development project of Ronggui’s strategic emerging industries(Ronggui Jingfa[2019]Reference No.19)the Program of Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development,China(No.y809jm1001)。
文摘Dissolved organic matter(DOM)derived from various composts can promote significant changes of soil properties.However,little is known about the DOM compositions and their similarities and differences at the molecular level.In this study,the molecular compositions of DOM derived from kitchen waste compost(KWC),green waste compost(GWC),manure waste compost(MWC),and sewage sludge compost(SSC)were characterized by electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry(ESI FT-ICR MS).The molecular formulas were classified into four subcategories:CHO,CHON,CHOS,and CHONS.The KWC,MWC,and SSC DOM represented the highest fraction(35.8%-47.4%)of CHON subcategory,while the GWC DOM represented the highest fraction(68.4%)of CHO subcategory.The GWC DOM was recognized as the nitrogen-and sulfurdeficient compounds that were less saturated,more aromatic,and more oxidized compared with other samples.Further analysis of the oxygen,nitrogen-containing(N-containing),and sulfur-containing(S-containing)functional groups in the four subcategories revealed higher organic molecular complexity.Comparison of the similarities and differences of the four samples revealed 22.8%ubiquitous formulas and 17.4%,11.1%,10.7%,and 6.3%unique formulas of GWC,KWC,SSC,and MWC DOM,respectively,suggesting a large proportion of ubiquitous DOM as well as unique,source-specific molecular signatures.The findings presented herein provide new insight into the molecular characterization of DOM derived from various composts and demonstrated the potential role of these different compounds for agricultural utilization.
文摘The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the current waste collection system in Guinea has proved inadequate, as moving garbage from point “A” to point “B” is tantamount to “moving the problem”. The aim of this experimental work is to demonstrate the cost-effectiveness and benefits of sustainable waste management. As part of this drive to valorize biodegradable waste, the Waste Management Research Center has undertaken a series of activities ranging from composting organic waste to testing compost on certain crop varieties. An experimental field of 8024 m2 was laid out and treated with 1500 Kg of fine compost in doses ranging from 2.5 to 5 T/ha. Two crop varieties, eggplant and chili, were tested. Compost application increased production yields: 15 to 21 tonnes of eggplant and 10.4 to 11.1 tonnes of chili per hectare. Growth rates compared with usual yields varied from 50% to 64% and from 11% to 17% for eggplant and chili, respectively. This study resulted in an optimum compost dose of 2.5 T/ha for this phase.
文摘Conventional agricultural techniques have been degrading American soils nationwide since the beginnings of modern-day agriculture through practices such as soil tilling, using nitrogen synthetic fertilizers, and monocultural systems. These techniques contribute to degrading soil health, mass emissions of carbon dioxide into the atmosphere, and decreased biodiversity. Regenerative agriculture techniques include the utilization of cover crops, compost, no-tillage, the integration of livestock, and crop rotation. The APS Laboratory for Sustainable Agriculture focused on the effectiveness of compost by comparing the growth of lettuce in four different treatments: 100% Compost (100%C), 75% Compost 25% Miracle-Gro (75%C - 25%MG), 50% Compost 50% Miracle-Gro (50%C - 50%MG), and finally, 100% Miracle-Gro (100%MG). The lettuce seeds were kept in a growth tent for fifteen days during their period of germination before being transferred to four 1 × 1 × 0.15 m plots in the Food Forest at Florida Gulf Coast University (FGCU) for the 60-day growth period. The lettuce crops grew to full bloom and were ready for harvest. Sampling events took place every six days in which crop growth data including wet weight (g), dry weight (g), nitrogen (mg/g), chlorophyll concentration (mg/cm2), and leaf area (LA) (cm2) were collected. Statistical analysis was then conducted from the data. Based on the statistical tests conducted at the 5% significance level using R statistical software, soil treatment type was found to be significant (p = 0.0002). Soil treatment type was shown to have significantly impacted wet weight (p χ2 [3] = 3.91, p = 0.2717). 100%C and 100%MG of soil treatments produced the most successful lettuce crops. The 100%C soil treatment yielded lettuce crops with the heaviest wet weights and the largest LAs, and the 100% MG soil treatment yielded the heaviest dry weights and the highest nitrogen readings. Results demonstrate the effectiveness and feasibility of using compost as a technique for regenerative agriculture.
文摘Twelve percent (12%) of Ghanaians are food insecure, and climate-smart crops like sweet potatoes are required to help end poverty. Small-scale farmers in Ghana who produce low-technology, subsistence crops, such as sweet potatoes, are more food secure than those who do not. This study was initiated to investigate the effect of chicken manure, compost, and cow dung on the growth and yield of “apomuden”, “SARI-Nyoriberigu”, “SARI-Nan” and “kufour” sweet potato under the Guinea Savannah agroecological zone of Ghana. Organic fertilizer increased leaf chlorophyll content and leaf area index. The application of cow dung, chicken manure and compost in 2015 significantly increased total storage root yield by 38%, 55% and 98%, 62%, 45% and 37%, 52%, 61% and 44%, and 33%, 36% and 28% for SARI-Nyoriberigu, Kufour, SARI-Nan and Apomuden, respectively, when compared to the untreated check. In 2016, and in comparison with the untreated check, the application of cow dung, chicken manure and compost increased total storage root yield by 42%, 61% and 93%, 69%, 49% and 41%, 57%, 67% and 48%, and 36%, 39% and 30% for SARI-Nyoriberigu, Kufour, SARI-Nan and Apomuden, respectively. Hence, the application of organic fertilizers will increase sweet potato yield, give higher returns to resource-poor smallholder farmers and contribute to enhancing food and nutrition security.
文摘Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed the split-additions of nitrogen-rich substrate to composting materials and their effect on GHGs emissions as well as the quality of the composts. Nitrogen-rich substrates formulated from pig and goat manure were co-composted with MSW for a 12-weeks period by split adding at mesophilic (˚C) and thermophilic (>50˚C) stages in five different treatments. Representative samples from the compost were taken from each treatment for physicochemical, heavy metals and bacteriological analysis. In-situ CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O gas emissions were also analyzed weekly during composting. It was observed that all the treatments showed significant organic matter decomposition, reaching thermophilic temperatures in the first week of composting. The absence affects the suitable agronomic properties. All nitrogen-rich substrate applied at thermophilic stage (Treatment two) recorded the highest N, P and K concentrations of 1.34%, 0.97% and 2.45%, respectively with highest nitrogen retention. In terms of GHG emissions, CO<sub>2</sub> was highest at the thermophilic stage when N-rich substrate was added in all treatment, while CH<sub>4</sub> was highest in the mesophilic stage with N-rich substrate addition. N<sub>2</sub>O showed no specific trend in the treatments. Split addition of the N-rich substrate for co-composting of MSW produced compost which is stable, has less nutrient loss and low GHG emissions. Split addition of a nitrogen-rich substrate could be an option for increasing the fertilizer value of MSW compost.
文摘Waste management is crucial due to the fast increase of human population, causing an increase in solid waste generation which if not properly managed causes environmental problems. Around 57% of the wastes generated from homes are made up of green material (fruits, vegetables…). Thus, reusing and recycling green wastes through composting is one way of reducing the waste load to landfills. Composting is the transformation of raw organic materials into organic soil amendments that provide nutrients to crops and enhance the tilth, fertility, and productivity of soils. Aerobic windrow composting system at Sukomi Greensite facility located at Karantina is performed, where materials biodegrade under controlled conditions to produce compost. However, assessment of the quality of the compost is fundamental in order to determine its usages. Thus, regular testing of physical, chemical and biological parameters was performed for adequate monitoring purposes. The basic objective of this study was to determine the characteristics of the Lebanese municipal solid waste compost on a yearly basis and compare these characteristics amongst the years. Hence, each parameter was tested and compared to the BNQ international Canadian standards for proper classification of the compost and adequate identification of its usages. The preliminary data obtained were statistically diagnosed through principal component analysis by Spadv55 software. All the data reflected the normal content value of the studied parameters with minor differences between the years except for year 2007 which demonstrated higher levels of Potassium, Phosphate, Lead and Cadmium. The characteristics of the compost enabled it to be used as a soil amendment on all types of agricultural and landscape commodities at the adequate dosages and proper timing. This data will additionally reflect the efficiency of the solid waste management practices adopted via highlighting the importance of the implementation of the integrated solid waste management practices.
文摘Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites.
基金Supported by Key Project of Natural Science Foundation of Inner Mongolia Autonomous Region(200607010403)National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science&Technology of China(2006BAD04A15)~~
文摘[Objective] The aim of this study was to explore the sterilization effects on Escherichia coli by adding bacterial inhibitor(CaCN2)during the process of cattle manure composting so as to provide a theoretical basis for cattle manure harmless treatment.[Method] Both experimental groups supplemented with 2.0% bacterial inhibitor and control groups without bacterial inhibitor were cultured under different temperatures(20,30,37,50,60 ℃)to determine the optimal composing temperature.Under 30 ℃,different bacterial inhibitor doses(0,2.0%,2.5%,3.0%)were added into the compost to obtain the optimal bacterial inhibitor addition dose.[Result] 30,50 and 60 ℃ were ideal temperatures for sterilization of E.coli.Under 30 ℃,E.coli couldn't be detected in 2.5% dose group and 3.0% dose group after culture for 48 h,demonstrating no less than 2.5% bacterial inhibitor should be added.[Conclusion] It has an important significance to enhance the sterilization effects on E.coli by adding CaCN2 into cattle manure compost especially in winter.