The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors af...The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.展开更多
The process of Electrical slag surfacing with liquid metal(ESS LM)is a complex physical and chemical process including electric field,magnetic field,flow field and temperature field,etc.As the complicated technology a...The process of Electrical slag surfacing with liquid metal(ESS LM)is a complex physical and chemical process including electric field,magnetic field,flow field and temperature field,etc.As the complicated technology and high cost of manufacturing compound rolls,simulating the relationship between ESS LM process parameters and physical fields of ESS LM process is important.Through the numerical simulation of finite volume method to the process of ESS LM in the conditions of different roll core diameters,slag amount,pouring speed,pouring temperature and input power,temperature field and flow field in different conditions were obtained.When the diameter of core material, operation voltage,pouring rate,pouring temperature and slag height of conductive mold was 250mm,40V,8mm/min, 1750K and 50mm respectively,the depth of molten metal was 30mm and fusion thickness of core material was 5mm which was consistent with the experiment results.According to the simulation results,operation with voltage of 42V, cladding speed of 10mm/min,pouring temperature of 1760K and slag height of 54mm in the conductive mould,achieved much more shallow metal pool,which is beneficial to vertical crystallization.展开更多
Iron aluminides exhibit good resistance to high-temperature sulfidizing and oxidizing environments and potential for structural applications at high temperatures under corrosive environments. In this study, Fe-Al inte...Iron aluminides exhibit good resistance to high-temperature sulfidizing and oxidizing environments and potential for structural applications at high temperatures under corrosive environments. In this study, Fe-Al intermetallic compound was prepared by multi-layered roll-bonding of elemental Fe and Al foils. The process consisted of the accumulative roll-bonding (ARE) for making a laminated Fe/Al sheet and the subsequent heat treatment promoting a solid phase reaction in the laminated Fe/Al sheet. The microstructures produced at each processing stage were characterized by optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Vickers microhardness testing was used for hardness determination. A homogeneous intermetallic compound of Fe3Al or FeAl could be obtained after the subsequent heat treatment for 1.8 ks at 973 K and for 10.8 ks at 1123 or 1173 K.展开更多
辛周期模态分解(symplectic period mode decomposition, SPMD)方法可以准确地提取周期脉冲分量,是一种有效的滚动轴承单一故障诊断方法。但在滚动轴承出现复合故障时,尤其是强背景噪声下,周期脉冲信号往往较微弱,使得SPMD难以提取出不...辛周期模态分解(symplectic period mode decomposition, SPMD)方法可以准确地提取周期脉冲分量,是一种有效的滚动轴承单一故障诊断方法。但在滚动轴承出现复合故障时,尤其是强背景噪声下,周期脉冲信号往往较微弱,使得SPMD难以提取出不同周期的脉冲分量,进而限制了其在复合故障诊断中的应用。对此,提出了改进的辛周期模态分解(improved symplectic period mode decomposition, ISPMD)方法。该方法首先采用求差增强技术和最小噪声幅值反卷积相结合的方法对信号进行降噪,增强周期脉冲,以准确估计故障周期;然后构造对应的周期截断矩阵,并通过辛几何相似变换和周期冲击强度获得辛几何周期分量;最后对残差信号采用迭代分解,进而得到不同周期的辛几何周期分量。试验结果表明,ISPMD能准确提取出周期脉冲分量,是一种有效的滚动轴承复合故障诊断方法。展开更多
The microstructural evolution and inteffacial reaction of the Au/Sn/Au/Sn/Au/Sn/Au couples were investigated during annealing at 453, 523, and 543 K for up to 240 h. The Au/Sn combination formed a rapid diffusion syst...The microstructural evolution and inteffacial reaction of the Au/Sn/Au/Sn/Au/Sn/Au couples were investigated during annealing at 453, 523, and 543 K for up to 240 h. The Au/Sn combination formed a rapid diffusion system. Even in rolled Au-Sn solder, three phases, such as AuSn, AuSn2, and AuSn4, were formed. After initial annealing at 453 K, the diffusion layers of AuSn, AuSn2, and AuSn4, which were formed after rolling, expanded gradually and then fully transformed into phase (containing Sn from 10% to 18.5%, mole fraction) and 6 (AuSn) phase. As a whole, the microstmcture of the couple was stable during annealing at 453 K. The solid-state interracial reaction was much faster at 523 K than at 453 K. After annealing at 523 K for 6 h, the AuSn, AuSn2, and AuSn4 were fully transformed into the phase and phase (AuSn). In spite of the prolonged annealing time for up to 240 h, no significant change of the interfacial microstructure occurred, and the microstructure of the couple was stable during annealing at 523 K. When annealing at 543 K, however, the interfacial of Au/Sn was transformed into solid-liquid state, and the whole couple formed a eutecfic structure rapidly, causing the solder to be brittle. The study results clearly demonstrate that the service temperature of the Au-Sn solder should be lower than 543 K.展开更多
Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in th...Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of a-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room tem- perature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.展开更多
文摘The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.
基金Item Sponsored by Central University of basic scientific research expenses in graduate students' research projects(N090602006)the National Natural Science Fund Project(50904015)+1 种基金National Natural Science Foundation of China Youth Project(51104038)Basic scientific research expenses of young teachers' scientific research project(N100302006)
文摘The process of Electrical slag surfacing with liquid metal(ESS LM)is a complex physical and chemical process including electric field,magnetic field,flow field and temperature field,etc.As the complicated technology and high cost of manufacturing compound rolls,simulating the relationship between ESS LM process parameters and physical fields of ESS LM process is important.Through the numerical simulation of finite volume method to the process of ESS LM in the conditions of different roll core diameters,slag amount,pouring speed,pouring temperature and input power,temperature field and flow field in different conditions were obtained.When the diameter of core material, operation voltage,pouring rate,pouring temperature and slag height of conductive mold was 250mm,40V,8mm/min, 1750K and 50mm respectively,the depth of molten metal was 30mm and fusion thickness of core material was 5mm which was consistent with the experiment results.According to the simulation results,operation with voltage of 42V, cladding speed of 10mm/min,pouring temperature of 1760K and slag height of 54mm in the conductive mould,achieved much more shallow metal pool,which is beneficial to vertical crystallization.
文摘Iron aluminides exhibit good resistance to high-temperature sulfidizing and oxidizing environments and potential for structural applications at high temperatures under corrosive environments. In this study, Fe-Al intermetallic compound was prepared by multi-layered roll-bonding of elemental Fe and Al foils. The process consisted of the accumulative roll-bonding (ARE) for making a laminated Fe/Al sheet and the subsequent heat treatment promoting a solid phase reaction in the laminated Fe/Al sheet. The microstructures produced at each processing stage were characterized by optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Vickers microhardness testing was used for hardness determination. A homogeneous intermetallic compound of Fe3Al or FeAl could be obtained after the subsequent heat treatment for 1.8 ks at 973 K and for 10.8 ks at 1123 or 1173 K.
文摘辛周期模态分解(symplectic period mode decomposition, SPMD)方法可以准确地提取周期脉冲分量,是一种有效的滚动轴承单一故障诊断方法。但在滚动轴承出现复合故障时,尤其是强背景噪声下,周期脉冲信号往往较微弱,使得SPMD难以提取出不同周期的脉冲分量,进而限制了其在复合故障诊断中的应用。对此,提出了改进的辛周期模态分解(improved symplectic period mode decomposition, ISPMD)方法。该方法首先采用求差增强技术和最小噪声幅值反卷积相结合的方法对信号进行降噪,增强周期脉冲,以准确估计故障周期;然后构造对应的周期截断矩阵,并通过辛几何相似变换和周期冲击强度获得辛几何周期分量;最后对残差信号采用迭代分解,进而得到不同周期的辛几何周期分量。试验结果表明,ISPMD能准确提取出周期脉冲分量,是一种有效的滚动轴承复合故障诊断方法。
文摘The microstructural evolution and inteffacial reaction of the Au/Sn/Au/Sn/Au/Sn/Au couples were investigated during annealing at 453, 523, and 543 K for up to 240 h. The Au/Sn combination formed a rapid diffusion system. Even in rolled Au-Sn solder, three phases, such as AuSn, AuSn2, and AuSn4, were formed. After initial annealing at 453 K, the diffusion layers of AuSn, AuSn2, and AuSn4, which were formed after rolling, expanded gradually and then fully transformed into phase (containing Sn from 10% to 18.5%, mole fraction) and 6 (AuSn) phase. As a whole, the microstmcture of the couple was stable during annealing at 453 K. The solid-state interracial reaction was much faster at 523 K than at 453 K. After annealing at 523 K for 6 h, the AuSn, AuSn2, and AuSn4 were fully transformed into the phase and phase (AuSn). In spite of the prolonged annealing time for up to 240 h, no significant change of the interfacial microstructure occurred, and the microstructure of the couple was stable during annealing at 523 K. When annealing at 543 K, however, the interfacial of Au/Sn was transformed into solid-liquid state, and the whole couple formed a eutecfic structure rapidly, causing the solder to be brittle. The study results clearly demonstrate that the service temperature of the Au-Sn solder should be lower than 543 K.
文摘Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of a-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room tem- perature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.