A comprehensive assessing method based on the principle of the gray system theory and gray relational grade analysis was put forward to optimize water consumption forecasting models. The method provides a better accur...A comprehensive assessing method based on the principle of the gray system theory and gray relational grade analysis was put forward to optimize water consumption forecasting models. The method provides a better accuracy for the assessment and the optimal selection of the water consumption forecasting models. The results show that the forecasting model built on this comprehensive assessing method presents better self-adaptability and accuracy in forecasting.展开更多
Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem ...Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem for AEOS(OSPFAS).Since the observation scheduling problem for AEOS with comprehensive task clustering(OSWCTC)is a dynamic combination optimization problem,two optimization objectives,the loss rate(LR)of the image quality and the energy consumption(EC),are proposed to format OSWCTC as a bi-objective optimization model.Harnessing the power of an adaptive large neighborhood search(ALNS)algorithm with a nondominated sorting genetic algorithm II(NSGA-II),a bi-objective optimization algorithm,ALNS+NSGA-II,is developed to solve OSWCTC.Based on the existing instances,the efficiency of ALNS+NSGA-II is analyzed from several aspects,meanwhile,results of extensive computational experiments are presented which disclose that OSPFAS considering CTC produces superior outcomes.展开更多
园区综合能源系统(Park-level Integrated Energy System,PIES)供能设备多样,能源耦合机制复杂,是典型的复杂能源系统。为实现PIES低碳经济运行并提升风电消纳量以及解决系统因用能结构不合理导致的能源利用效率偏低问题,文中建立了电...园区综合能源系统(Park-level Integrated Energy System,PIES)供能设备多样,能源耦合机制复杂,是典型的复杂能源系统。为实现PIES低碳经济运行并提升风电消纳量以及解决系统因用能结构不合理导致的能源利用效率偏低问题,文中建立了电热需求响应模型优化负荷,并充分考量能量的“质”与“量”,基于热力学第一、第二定律建立了对系统碳排放约束性较强的综合能效模型,并将系统的热负荷根据能源品位进行细化区分,依据热能梯级利用理论,建立了能量耦合设备的数学模型。最后结合系统经济成本目标及系统综合能效目标建立了园区综合能源系统多目标优化调度模型,实现针对系统内各设备出力的调度。算例分析表明,文中提出的优化调度方案能够在提升系统风电消纳率及运行经济性的同时兼顾系统的低碳高效运行。展开更多
基金Project(2003BA808A15-2-4) supported by the National Scientific and Technologies Key Task Program
文摘A comprehensive assessing method based on the principle of the gray system theory and gray relational grade analysis was put forward to optimize water consumption forecasting models. The method provides a better accuracy for the assessment and the optimal selection of the water consumption forecasting models. The results show that the forecasting model built on this comprehensive assessing method presents better self-adaptability and accuracy in forecasting.
文摘Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem for AEOS(OSPFAS).Since the observation scheduling problem for AEOS with comprehensive task clustering(OSWCTC)is a dynamic combination optimization problem,two optimization objectives,the loss rate(LR)of the image quality and the energy consumption(EC),are proposed to format OSWCTC as a bi-objective optimization model.Harnessing the power of an adaptive large neighborhood search(ALNS)algorithm with a nondominated sorting genetic algorithm II(NSGA-II),a bi-objective optimization algorithm,ALNS+NSGA-II,is developed to solve OSWCTC.Based on the existing instances,the efficiency of ALNS+NSGA-II is analyzed from several aspects,meanwhile,results of extensive computational experiments are presented which disclose that OSPFAS considering CTC produces superior outcomes.
文摘园区综合能源系统(Park-level Integrated Energy System,PIES)供能设备多样,能源耦合机制复杂,是典型的复杂能源系统。为实现PIES低碳经济运行并提升风电消纳量以及解决系统因用能结构不合理导致的能源利用效率偏低问题,文中建立了电热需求响应模型优化负荷,并充分考量能量的“质”与“量”,基于热力学第一、第二定律建立了对系统碳排放约束性较强的综合能效模型,并将系统的热负荷根据能源品位进行细化区分,依据热能梯级利用理论,建立了能量耦合设备的数学模型。最后结合系统经济成本目标及系统综合能效目标建立了园区综合能源系统多目标优化调度模型,实现针对系统内各设备出力的调度。算例分析表明,文中提出的优化调度方案能够在提升系统风电消纳率及运行经济性的同时兼顾系统的低碳高效运行。