This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equall...This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equally into n layers while load and consolidation time are also divided into small parts and time intervals accordingly. The problem of one-dimensional consolidation of soil stratum under cyclic loading can then be dealt with at each time interval as one-dimensional linear consolidation of multi-layered soils under constant loading. The compression or rebounding of each soil layer can be judged by the effective stress of the layer. When the effective stress is larger than that in the last time interval, the soil layer is compressed, and when it is smaller, the soil layer rebounds. Thus, appropriate compressibility can be chosen and the consolidation of the layered system can be analyzed by the available analytical linear consolidation theory. Based on the semi-analytical method, a computer program was developed and the behavior of one-dimensional consolidation of soil with varied compressibility under cyclic loading was investigated, and compared with the available consolidation theory which takes no consideration of varied compressibility of soil under cyclic loading. The results showed that by taking the variable compressibility into account, the rate of consolidation of soil was greater than the one predicted by conventional consolidation theory.展开更多
With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of...With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.展开更多
Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville ...Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville and Yengola. Mineralogical and geotechnical analysis revealed that the soil of Brazzaville is mainly composed of kaolinite whereas that of Yengola is a mixture of kaolinite and illite. The amounts of clay (46 and 48%, respectively) are higher than those usually recommended for bricks’ production without stabilizers. Despite this difference of mineralogical compositions, the physical properties of these soils are quite similar. The compressive strength of the resulted bricks compacted with an energy of 2.8 MPa is about 1.5 MPa, which is the lower limit value allowed for adobes. Reinforcing with polyethylene waste nets increased the strength by about 20 to 30% and slightly enhanced resistance to water, Young’s modulus and strain to failure. However, the reinforcement had no significant effect either on bricks’ curing length or on their shrinkage.展开更多
Based on the theory of fluid dynamics in porous media, a numerical model of gas flow in unsaturated zone is developed with the consideration of gas density change due to variation of air pressure. This model is charac...Based on the theory of fluid dynamics in porous media, a numerical model of gas flow in unsaturated zone is developed with the consideration of gas density change due to variation of air pressure. This model is characterized of its wider range of availability. The accuracy of this numerical model is analyzed through comparison with modeling results by previous model with presumption of little pressure variation and the validity of this numerical model is shown. Thus it provides basis for the designing and management of landfill gas control system or soil vapor extraction system in soil pollution control.展开更多
Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and sal...Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.展开更多
This work presents a study on the behaviors of diatomaceous soils. Although studies are rarely reported on these soils, they have been identified in Mexico City, the Sea of Japan, the northeast coast of Australia,the ...This work presents a study on the behaviors of diatomaceous soils. Although studies are rarely reported on these soils, they have been identified in Mexico City, the Sea of Japan, the northeast coast of Australia,the equatorial Pacific, and the lacustrine deposit of Bogota(Colombia), among other locations. Features of this kind of soil include high friction angle, high initial void ratio, high compressibility index, high liquid limit, and low density. Some of these features are counterintuitive from a classical soil mechanics viewpoint. To understand the geotechnical properties of the diatomaceous soil, a comprehensive experimental plan consisting of more than 2400 tests was performed, including physical tests such as grain size distribution, Atterberg limits, density of solid particles, and organic matter content; and mechanical tests such as oedometric compression tests, unconfined compression tests, and triaxial tests.Laboratory tests were complemented with scanning electron microscope(SEM) observations to evaluate the microstructure of the soil. The test results show that there is an increase in liquid limit with increasing diatomaceous content, and the friction angle also increases with increasing diatomaceous content. In addition, several practical correlations were proposed for this soil type for shear strength mobilization and intrinsic compression line. Finally, useful correlations were presented, such as the relationship between the state consistency and the undrained shear strength, the friction angle and the liquid limit, the void ratio at 100 kPa and the liquid limit, the plasticity index and the diatomaceous content, among others.展开更多
The influences of cement type, cement content, and curing time on the unconfined compression strength (UCS) of soil-cement were investigated. The influence of groundwater on UCS of soil- cement was also studied. The...The influences of cement type, cement content, and curing time on the unconfined compression strength (UCS) of soil-cement were investigated. The influence of groundwater on UCS of soil- cement was also studied. The experimental results indicate that the soil treated with high grade cement presents a higher UCS. Additionally, the UCS of soil-cement presents linearly increased with the cement content. A logarithm correlation between UCS and curing time presents to forecast the strength development. Compared with the UCS of samples immersed in distilled water, those immersed in groundwater oresent a hizher value.展开更多
A new measurement technique is used to determine the settlement of bridge pile foundation and the thickness of deep compressed soft layer. The finite element Plaxis 3D foundation program is used in the analysis with a...A new measurement technique is used to determine the settlement of bridge pile foundation and the thickness of deep compressed soft layer. The finite element Plaxis 3D foundation program is used in the analysis with a proposed empirical equation to modify the input parameters represented by the soil compression modulus. The results of the numerical analysis using the proposed empirical equation provide insight to the settlement analysis of pile groups in soft clayey soils; consequently, the finite element Plaxis 3D program can be a useful tool for numerical analysis. The numerical analysis is modified by adjusting the calculation of compression modulus from those obtained under pressure between 100-200 kPa by which the results of the settlement are modified and thus matching the realistic measurements. The absolute error is 3 mm which is accepted compared with the last researches. This scenario can be applied for the similar problems in the theoretical applications of deep foundations.展开更多
The current study deals Swith thermo-mechanical properties of stabilized soil small bricks with the help of organic binders of sugar cane molasses and cassava starch. Different formulations of soil concrete have been ...The current study deals Swith thermo-mechanical properties of stabilized soil small bricks with the help of organic binders of sugar cane molasses and cassava starch. Different formulations of soil concrete have been suggested after the geotechnical characterization of samples of soil was taken. From these, it arises that the studied soil is the most plastically clay (of type A<sub>3</sub>) according to GTR classification. Samples made of small bricks and measured out at 4%, 6% and 8% of binders (molasses, starch or molasses + starch) have been warmed up to different temperatures (100°C, 150°C, 200°C and 250°C) for the rising of the thermic behavior under different conditions and submitted to crushing testings for the estimation of characteristic resistances to the compression. According to the mechanical behavior, we note an improvement of resistances for small bricks measured 4%, 6% and 8%, of molasses respectively of 32.44%, 32.06% and 23.43% against the value of reference for small bricks without molasses. In the same way, the binder (molasses + starch) also reveals an improvement of resistance to the compression of 13.27%, 26.17% and 26.17%. On the contrary, the stabilization with the starch binder did not bring a significative improvement. According to the thermic influence, the heating at 100°C of stabilized small bricks at 4%, 6% and 8% of molasses, reveals a significative improvement of resistances. Moreover, the stabilization with the starch reveals on the contrary a good behavior for heatings at 150°C and 250°C. In short, for the binder (molasses + starch), it is the heating at 200°C that shows some improvements of remarkable resistances. Different analyses of realized statistics also show the effectivity of obtained results. For all realized formulations, the measuring out at 6% of binders (molasses, or molasses + starch) seems as optimal in front of the best thermo-mechanical revealed properties.展开更多
In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investi...In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investigations were performed to compare hydrostatic compression test (HCT) responses and evaluate the compression index, Cc, which is an indicator of the soil's susceptibility to compaction-induced damage. The experiments have been performed on 24 soil samples typologies. Each sample has been obtained by combining three types of soil granulometry (types A, B and C) with a relative content varying from 0% to 100% in 20% increments. Soil type A had a granulometry ranging between 0.5 mm and 1 mm, type B between 0.25 mm and 0.5 mm, and type C less than 0.25 mm. These samples were representative of a sandy soil, chemically inactive and had various granulometries and initial moisture contents. A cell for HCT has been set up to allow the initial volume measurement of the test pieces and the subsequent changes during HCT with an estimated error less than 0.1 cm3. All samples were pre-compacted and prepared in agreement with the actual standards. The experimental data are reported in diagrams, the data allowed comparison of the mechanical behaviors between the considered unsaturated soils and underlined how soil moisture and granulometry affect soil response during HCT. Furthermore, because of the methodology used, the equipment was very economical.展开更多
Grain crushing plays an important role in one-dimensional (1D) compression and creep behaviors of granular materials under high stress. It is clear that the macro-properties of granular materials are closely related t...Grain crushing plays an important role in one-dimensional (1D) compression and creep behaviors of granular materials under high stress. It is clear that the macro-properties of granular materials are closely related to the micro-fracture properties of grains in 1D compression and creep tests. In this paper, a series of 1D compression and creep tests were performed on Ottawa sand to investigate the deformation and grain crushing properties of granular materials, and it shows that the void ratio is correlated to the grain crushing amount (the quantity of crushed grains) for granular materials subjected to grain crushing. The test results, combining with the existing test data related to grain crushing of granular materials, were used to verify the relation. Moreover, the implications of these relations on the yield of granular material, and the equivalent effect of stress and time in changing soil fabric are presented.展开更多
Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first...Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first paper. The shift stresses and the transformation between the generalized dissipative stress space and actual stress space are established following a systematic procedure. The corresponding constitutive behavior of the proposed model is determined, which reflects the internal structural configuration and damage behavior for geomaterials. Four evolution variables κj^i(i=D, R;j=V, S) and the basic parameters λ, s, v and e0 are introduced to account for the progressive loss of internal structure for natural clays. A series of fully triaxial tests and isotropic compression tests are performed for structured and reconstituted samples of Beijing and Zhengzhou natural clays. The validation of the proposed model is examined by comparing the numerical results with the experimental data.展开更多
For soil improvement, a method using plant fiber has been used since ancient times. In recent years, the construction method using plant fiber has attracted attention as a ground improvement technology with less envir...For soil improvement, a method using plant fiber has been used since ancient times. In recent years, the construction method using plant fiber has attracted attention as a ground improvement technology with less environmental load. In this work, the soil improvement effect using waste bamboo fiber was experimentally examined. The liquid limit and plastic limit of the mixed soil tended to increase with increasing bamboo fiber content and there was no change in the plasticity index of the mixed soil by the difference of bamboo fiber content. As a result from the compaction test and unconfined compression test, it was revealed that mixing of bamboo fiber resulted in a reduction of soil material required for construction and increasing in strength. The maximum compressive stress of the bamboo fiber mixed soil at the mixing ratio of 0%, 1%, 3% and 5% were 115, 108, 130 and 152 kN/m2, respectively. As the soil with fiber showed the lower stiffness and higher strength than that without fiber in the dry region, it can be judged that the addition of fiber brought ductility to the soil. And it was found that the decrease in the stiffness of the specimen due to the increase of water content was suppressed by the addition of the bamboo fiber. From the results of the observation with the digital microscope, it was observed that the two-layer structure consisting of the main relatively thick fibrous structure and the secondary capillary fibrous structure were formed. Thus, it was found that the complex structure of the bamboo fiber is deeply involved in the strength of the mixed soil.展开更多
Dispersive soils which occur in many parts of the world are easily erodible and segregate in water pose serious problems of stability of earth and earth retaining structures. The mechanism of dispersivity of soils is ...Dispersive soils which occur in many parts of the world are easily erodible and segregate in water pose serious problems of stability of earth and earth retaining structures. The mechanism of dispersivity of soils is reasonably well understood. However there is simple method to identify the dispersivity of the soils and even more difficult to quantify the dispersivity. Visual classification, Atterberg’s limits and particle size analysis do not provide sufficient basis to differentiate between dispersive clays and ordinary erosion resistant clays. Pinhole test and double hydrometer test are the only two tests that are in vogue to identify the dispersive soils. This paper explores the possibility of using other standard tests such as shrinkage limit and unconfined compressive strength tests to quantify the dispersivity of the soils. The rationale of using the methods and correlation between the dispersivity determined by various methods has been explained. It has been concluded that dispersivity ascertained from strength tests is more reliable.展开更多
Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were r...Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were reinforced with various amounts of graphene, and the effect of graphene on the strength of these newly developed nanocomposites was studied. The fly ash brick nanocomposite samples were cured as per their standard curing time, and the burnt red soil brick nanocomposite samples were merely dried in the sun instead of being subjected to the traditional heat treatment for days to achieve sufficient strength. The water absorption ability of the fly ash bricks was also discussed. The compressive strength of all of the graphene-reinforced nanocomposite samples was tested, along with that of some standard (without graphene) composite samples with the same dimensions, to evaluate the effects of the addition of various amounts of graphene on the compressive strength of the bricks.展开更多
Yunnan province in China is a high background area of soil heavy metals, and agricultural planting and industrial and mining activities are relatively frequent, which aggravate soil heavy metal pollution. However, at ...Yunnan province in China is a high background area of soil heavy metals, and agricultural planting and industrial and mining activities are relatively frequent, which aggravate soil heavy metal pollution. However, at present, there are few reports on the overall or large-scale soil-crop pollution and risk assessment of heavy metals in Yunnan Province. This study through 11 cities in Yunnan province of China farmland soil-crop systems of heavy metal lead, cadmium content, enrichment coefficient is analyzed, and using the method of potential ecological harm index, index of compressive quality to evaluate heavy metal pollution soil-crop system risk. Results showed that the average content of soil heavy metal Cd and Pb were 1.31 mg/kg, 64.17 mg/kg, which are higher than the background value of Yunnan province. The average contents of Pb and Cd in the edible parts of crops were 0.20 mg/kg, 0.08 mg/kg. The average content of heavy metals in crops in Diqing (Pb) and Nujiang (Cd) was 0.72 mg/kg and 0.148 mg/kg. The enrichment coefficients of heavy metals in edible parts of crops were the largest in Diqing (Pb) and Zhaotong (Cd). The average value of ecological risk index of Pb element in soil is 2.79, which indicates that the study area is in a slight ecological hazard, the average value of the ecological risk index of Cd in soil is 126.43. The average value of the comprehensive quality impact index (IICQ) is 4.27, which indicates that the study area is moderately polluted. In this study, the contents of heavy metals Cd and Pb in soils and crops in different administrative regions were determined, and the heavy metals Pb and Cd in soil-crop system of Yunnan province, China were evaluated, it is expected to have important scientific and theoretical significance for the safe use of cultivated land to export safe agricultural products and promote the sustainable development of agriculture in Yunnan Plateau.展开更多
Olivine sand is a natural mineral,which,when added to soil,can improve the soil’s mechanical properties while also sequester carbon dioxide(CO2)from the surrounding environment.The originality of this paper stems fro...Olivine sand is a natural mineral,which,when added to soil,can improve the soil’s mechanical properties while also sequester carbon dioxide(CO2)from the surrounding environment.The originality of this paper stems from the novel two-stage approach.In the first stage,natural carbonation of olivine and carbonation of olivine treated soil under different CO2pressures and times were investigated.In this stage,the unconfined compression test was used as a tool to evaluate the strength performance.In the second stage,details of the installation and performance of carbonated olivine columns using a laboratory-scale model were investigated.In this respect,olivine was mixed with the natural soil using the auger and the columns were then carbonated with gaseous CO2.The unconfined compressive strengths of soil in the first stage increased by up to 120% compared to those of the natural untreated soil.The strength development was found to be proportional to the CO2pressure and carbonation period.Microstructural analyses indicated the presence of magnesite on the surface of carbonated olivinetreated soil,demonstrating that modified physical properties provided a stronger and stiffer matrix.The performance of the carbonated olivine-soil columns,in terms of ultimate bearing capacity,showed that the carbonation procedure occurred rapidly and yielded a bearing capacity value of 120 k Pa.Results of this study are of significance to the construction industry as the feasibility of carbonated olivine for strengthening and stabilizing soil is validated.Its applicability lies in a range of different geotechnical applications whilst also mitigates the global warming through the sequestration of CO2.展开更多
Discrete element modelling is commonly used for particle-scale modelling of granular or particulate materials. Developing a DEM model requires the determination of a number of micro-structural parameters, including th...Discrete element modelling is commonly used for particle-scale modelling of granular or particulate materials. Developing a DEM model requires the determination of a number of micro-structural parameters, including the particle contact stiffness and the particle-particle friction. These parameters cannot easily be measured in the laboratory or directly related to measurable, physical material parameters. Therefore, a calibration process is typically used to determine the values for use in simulations of physical systems. This paper focuses on how to define the particle stiffness for the discrete element modelling in order to perform realistic simulations of granular materials in the case of linear contact model. For that, laboratory tests and numerical discrete element modelling of triaxial compression tests have been carried out on two different non-cohesive soils i.e. poorly graded fine sand and gap graded coarse sand. The results of experimental tests are used to calibrate the numerical model. It is found that the numerical results are qualitatively and quantitatively in good agreement with the laboratory tests results. Moreover, the results show that the stress dependent of soil behaviour can be reproduced well by assigning the particle stiffness as a function of the particle size particularly for gap graded soil.展开更多
文摘This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equally into n layers while load and consolidation time are also divided into small parts and time intervals accordingly. The problem of one-dimensional consolidation of soil stratum under cyclic loading can then be dealt with at each time interval as one-dimensional linear consolidation of multi-layered soils under constant loading. The compression or rebounding of each soil layer can be judged by the effective stress of the layer. When the effective stress is larger than that in the last time interval, the soil layer is compressed, and when it is smaller, the soil layer rebounds. Thus, appropriate compressibility can be chosen and the consolidation of the layered system can be analyzed by the available analytical linear consolidation theory. Based on the semi-analytical method, a computer program was developed and the behavior of one-dimensional consolidation of soil with varied compressibility under cyclic loading was investigated, and compared with the available consolidation theory which takes no consideration of varied compressibility of soil under cyclic loading. The results showed that by taking the variable compressibility into account, the rate of consolidation of soil was greater than the one predicted by conventional consolidation theory.
基金Project(52068004)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,ChinaProject(AB19245018)supported by Key Research Projects of Guangxi Province,China。
文摘With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.
文摘Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville and Yengola. Mineralogical and geotechnical analysis revealed that the soil of Brazzaville is mainly composed of kaolinite whereas that of Yengola is a mixture of kaolinite and illite. The amounts of clay (46 and 48%, respectively) are higher than those usually recommended for bricks’ production without stabilizers. Despite this difference of mineralogical compositions, the physical properties of these soils are quite similar. The compressive strength of the resulted bricks compacted with an energy of 2.8 MPa is about 1.5 MPa, which is the lower limit value allowed for adobes. Reinforcing with polyethylene waste nets increased the strength by about 20 to 30% and slightly enhanced resistance to water, Young’s modulus and strain to failure. However, the reinforcement had no significant effect either on bricks’ curing length or on their shrinkage.
基金TheResearchFundfortheDoctoralProgramofHighEducation P .R .China(No 980 0 2 712 )
文摘Based on the theory of fluid dynamics in porous media, a numerical model of gas flow in unsaturated zone is developed with the consideration of gas density change due to variation of air pressure. This model is characterized of its wider range of availability. The accuracy of this numerical model is analyzed through comparison with modeling results by previous model with presumption of little pressure variation and the validity of this numerical model is shown. Thus it provides basis for the designing and management of landfill gas control system or soil vapor extraction system in soil pollution control.
基金Project(05YFSYSF00300) supported by the Natural Science Foundation of Tianjin
文摘Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.
文摘This work presents a study on the behaviors of diatomaceous soils. Although studies are rarely reported on these soils, they have been identified in Mexico City, the Sea of Japan, the northeast coast of Australia,the equatorial Pacific, and the lacustrine deposit of Bogota(Colombia), among other locations. Features of this kind of soil include high friction angle, high initial void ratio, high compressibility index, high liquid limit, and low density. Some of these features are counterintuitive from a classical soil mechanics viewpoint. To understand the geotechnical properties of the diatomaceous soil, a comprehensive experimental plan consisting of more than 2400 tests was performed, including physical tests such as grain size distribution, Atterberg limits, density of solid particles, and organic matter content; and mechanical tests such as oedometric compression tests, unconfined compression tests, and triaxial tests.Laboratory tests were complemented with scanning electron microscope(SEM) observations to evaluate the microstructure of the soil. The test results show that there is an increase in liquid limit with increasing diatomaceous content, and the friction angle also increases with increasing diatomaceous content. In addition, several practical correlations were proposed for this soil type for shear strength mobilization and intrinsic compression line. Finally, useful correlations were presented, such as the relationship between the state consistency and the undrained shear strength, the friction angle and the liquid limit, the void ratio at 100 kPa and the liquid limit, the plasticity index and the diatomaceous content, among others.
基金Funded by the National Natural Science Foundation of China(Nos.51009061,51137002)the Chinese Ministry of Water Resources Funds for Science and Technology Promotion(No.TG1137)
文摘The influences of cement type, cement content, and curing time on the unconfined compression strength (UCS) of soil-cement were investigated. The influence of groundwater on UCS of soil- cement was also studied. The experimental results indicate that the soil treated with high grade cement presents a higher UCS. Additionally, the UCS of soil-cement presents linearly increased with the cement content. A logarithm correlation between UCS and curing time presents to forecast the strength development. Compared with the UCS of samples immersed in distilled water, those immersed in groundwater oresent a hizher value.
基金Project(SWJT11ZT04)supported by the Central College Foundation of ChinaProject(2008g032-A)supported by the Major Projects S&T Foundation of China’s Ministry of Railways,China
文摘A new measurement technique is used to determine the settlement of bridge pile foundation and the thickness of deep compressed soft layer. The finite element Plaxis 3D foundation program is used in the analysis with a proposed empirical equation to modify the input parameters represented by the soil compression modulus. The results of the numerical analysis using the proposed empirical equation provide insight to the settlement analysis of pile groups in soft clayey soils; consequently, the finite element Plaxis 3D program can be a useful tool for numerical analysis. The numerical analysis is modified by adjusting the calculation of compression modulus from those obtained under pressure between 100-200 kPa by which the results of the settlement are modified and thus matching the realistic measurements. The absolute error is 3 mm which is accepted compared with the last researches. This scenario can be applied for the similar problems in the theoretical applications of deep foundations.
文摘The current study deals Swith thermo-mechanical properties of stabilized soil small bricks with the help of organic binders of sugar cane molasses and cassava starch. Different formulations of soil concrete have been suggested after the geotechnical characterization of samples of soil was taken. From these, it arises that the studied soil is the most plastically clay (of type A<sub>3</sub>) according to GTR classification. Samples made of small bricks and measured out at 4%, 6% and 8% of binders (molasses, starch or molasses + starch) have been warmed up to different temperatures (100°C, 150°C, 200°C and 250°C) for the rising of the thermic behavior under different conditions and submitted to crushing testings for the estimation of characteristic resistances to the compression. According to the mechanical behavior, we note an improvement of resistances for small bricks measured 4%, 6% and 8%, of molasses respectively of 32.44%, 32.06% and 23.43% against the value of reference for small bricks without molasses. In the same way, the binder (molasses + starch) also reveals an improvement of resistance to the compression of 13.27%, 26.17% and 26.17%. On the contrary, the stabilization with the starch binder did not bring a significative improvement. According to the thermic influence, the heating at 100°C of stabilized small bricks at 4%, 6% and 8% of molasses, reveals a significative improvement of resistances. Moreover, the stabilization with the starch reveals on the contrary a good behavior for heatings at 150°C and 250°C. In short, for the binder (molasses + starch), it is the heating at 200°C that shows some improvements of remarkable resistances. Different analyses of realized statistics also show the effectivity of obtained results. For all realized formulations, the measuring out at 6% of binders (molasses, or molasses + starch) seems as optimal in front of the best thermo-mechanical revealed properties.
文摘In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investigations were performed to compare hydrostatic compression test (HCT) responses and evaluate the compression index, Cc, which is an indicator of the soil's susceptibility to compaction-induced damage. The experiments have been performed on 24 soil samples typologies. Each sample has been obtained by combining three types of soil granulometry (types A, B and C) with a relative content varying from 0% to 100% in 20% increments. Soil type A had a granulometry ranging between 0.5 mm and 1 mm, type B between 0.25 mm and 0.5 mm, and type C less than 0.25 mm. These samples were representative of a sandy soil, chemically inactive and had various granulometries and initial moisture contents. A cell for HCT has been set up to allow the initial volume measurement of the test pieces and the subsequent changes during HCT with an estimated error less than 0.1 cm3. All samples were pre-compacted and prepared in agreement with the actual standards. The experimental data are reported in diagrams, the data allowed comparison of the mechanical behaviors between the considered unsaturated soils and underlined how soil moisture and granulometry affect soil response during HCT. Furthermore, because of the methodology used, the equipment was very economical.
基金Supported by Natural Sciences and Engineering Research Council of Canada, Alberta Energy Research Institute and the Department of Civil Engineering at University of Calgary
文摘Grain crushing plays an important role in one-dimensional (1D) compression and creep behaviors of granular materials under high stress. It is clear that the macro-properties of granular materials are closely related to the micro-fracture properties of grains in 1D compression and creep tests. In this paper, a series of 1D compression and creep tests were performed on Ottawa sand to investigate the deformation and grain crushing properties of granular materials, and it shows that the void ratio is correlated to the grain crushing amount (the quantity of crushed grains) for granular materials subjected to grain crushing. The test results, combining with the existing test data related to grain crushing of granular materials, were used to verify the relation. Moreover, the implications of these relations on the yield of granular material, and the equivalent effect of stress and time in changing soil fabric are presented.
基金the Major Research of the National Natural Science Foundation of China(No.90715035)HI-Tech Research and Development Program of China(Code 2007AA11Z132).
文摘Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first paper. The shift stresses and the transformation between the generalized dissipative stress space and actual stress space are established following a systematic procedure. The corresponding constitutive behavior of the proposed model is determined, which reflects the internal structural configuration and damage behavior for geomaterials. Four evolution variables κj^i(i=D, R;j=V, S) and the basic parameters λ, s, v and e0 are introduced to account for the progressive loss of internal structure for natural clays. A series of fully triaxial tests and isotropic compression tests are performed for structured and reconstituted samples of Beijing and Zhengzhou natural clays. The validation of the proposed model is examined by comparing the numerical results with the experimental data.
文摘For soil improvement, a method using plant fiber has been used since ancient times. In recent years, the construction method using plant fiber has attracted attention as a ground improvement technology with less environmental load. In this work, the soil improvement effect using waste bamboo fiber was experimentally examined. The liquid limit and plastic limit of the mixed soil tended to increase with increasing bamboo fiber content and there was no change in the plasticity index of the mixed soil by the difference of bamboo fiber content. As a result from the compaction test and unconfined compression test, it was revealed that mixing of bamboo fiber resulted in a reduction of soil material required for construction and increasing in strength. The maximum compressive stress of the bamboo fiber mixed soil at the mixing ratio of 0%, 1%, 3% and 5% were 115, 108, 130 and 152 kN/m2, respectively. As the soil with fiber showed the lower stiffness and higher strength than that without fiber in the dry region, it can be judged that the addition of fiber brought ductility to the soil. And it was found that the decrease in the stiffness of the specimen due to the increase of water content was suppressed by the addition of the bamboo fiber. From the results of the observation with the digital microscope, it was observed that the two-layer structure consisting of the main relatively thick fibrous structure and the secondary capillary fibrous structure were formed. Thus, it was found that the complex structure of the bamboo fiber is deeply involved in the strength of the mixed soil.
文摘Dispersive soils which occur in many parts of the world are easily erodible and segregate in water pose serious problems of stability of earth and earth retaining structures. The mechanism of dispersivity of soils is reasonably well understood. However there is simple method to identify the dispersivity of the soils and even more difficult to quantify the dispersivity. Visual classification, Atterberg’s limits and particle size analysis do not provide sufficient basis to differentiate between dispersive clays and ordinary erosion resistant clays. Pinhole test and double hydrometer test are the only two tests that are in vogue to identify the dispersive soils. This paper explores the possibility of using other standard tests such as shrinkage limit and unconfined compressive strength tests to quantify the dispersivity of the soils. The rationale of using the methods and correlation between the dispersivity determined by various methods has been explained. It has been concluded that dispersivity ascertained from strength tests is more reliable.
文摘Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were reinforced with various amounts of graphene, and the effect of graphene on the strength of these newly developed nanocomposites was studied. The fly ash brick nanocomposite samples were cured as per their standard curing time, and the burnt red soil brick nanocomposite samples were merely dried in the sun instead of being subjected to the traditional heat treatment for days to achieve sufficient strength. The water absorption ability of the fly ash bricks was also discussed. The compressive strength of all of the graphene-reinforced nanocomposite samples was tested, along with that of some standard (without graphene) composite samples with the same dimensions, to evaluate the effects of the addition of various amounts of graphene on the compressive strength of the bricks.
文摘Yunnan province in China is a high background area of soil heavy metals, and agricultural planting and industrial and mining activities are relatively frequent, which aggravate soil heavy metal pollution. However, at present, there are few reports on the overall or large-scale soil-crop pollution and risk assessment of heavy metals in Yunnan Province. This study through 11 cities in Yunnan province of China farmland soil-crop systems of heavy metal lead, cadmium content, enrichment coefficient is analyzed, and using the method of potential ecological harm index, index of compressive quality to evaluate heavy metal pollution soil-crop system risk. Results showed that the average content of soil heavy metal Cd and Pb were 1.31 mg/kg, 64.17 mg/kg, which are higher than the background value of Yunnan province. The average contents of Pb and Cd in the edible parts of crops were 0.20 mg/kg, 0.08 mg/kg. The average content of heavy metals in crops in Diqing (Pb) and Nujiang (Cd) was 0.72 mg/kg and 0.148 mg/kg. The enrichment coefficients of heavy metals in edible parts of crops were the largest in Diqing (Pb) and Zhaotong (Cd). The average value of ecological risk index of Pb element in soil is 2.79, which indicates that the study area is in a slight ecological hazard, the average value of the ecological risk index of Cd in soil is 126.43. The average value of the comprehensive quality impact index (IICQ) is 4.27, which indicates that the study area is moderately polluted. In this study, the contents of heavy metals Cd and Pb in soils and crops in different administrative regions were determined, and the heavy metals Pb and Cd in soil-crop system of Yunnan province, China were evaluated, it is expected to have important scientific and theoretical significance for the safe use of cultivated land to export safe agricultural products and promote the sustainable development of agriculture in Yunnan Plateau.
基金The financial support from Fundamental Research Grant Scheme(FRGS)entitled“sustainable soil stabilisation by olivineits mechanisms”funded by Ministry of Higher Education,Malaysia and Universiti Putra Malaysia(Project ID 93474-135837)
文摘Olivine sand is a natural mineral,which,when added to soil,can improve the soil’s mechanical properties while also sequester carbon dioxide(CO2)from the surrounding environment.The originality of this paper stems from the novel two-stage approach.In the first stage,natural carbonation of olivine and carbonation of olivine treated soil under different CO2pressures and times were investigated.In this stage,the unconfined compression test was used as a tool to evaluate the strength performance.In the second stage,details of the installation and performance of carbonated olivine columns using a laboratory-scale model were investigated.In this respect,olivine was mixed with the natural soil using the auger and the columns were then carbonated with gaseous CO2.The unconfined compressive strengths of soil in the first stage increased by up to 120% compared to those of the natural untreated soil.The strength development was found to be proportional to the CO2pressure and carbonation period.Microstructural analyses indicated the presence of magnesite on the surface of carbonated olivinetreated soil,demonstrating that modified physical properties provided a stronger and stiffer matrix.The performance of the carbonated olivine-soil columns,in terms of ultimate bearing capacity,showed that the carbonation procedure occurred rapidly and yielded a bearing capacity value of 120 k Pa.Results of this study are of significance to the construction industry as the feasibility of carbonated olivine for strengthening and stabilizing soil is validated.Its applicability lies in a range of different geotechnical applications whilst also mitigates the global warming through the sequestration of CO2.
文摘Discrete element modelling is commonly used for particle-scale modelling of granular or particulate materials. Developing a DEM model requires the determination of a number of micro-structural parameters, including the particle contact stiffness and the particle-particle friction. These parameters cannot easily be measured in the laboratory or directly related to measurable, physical material parameters. Therefore, a calibration process is typically used to determine the values for use in simulations of physical systems. This paper focuses on how to define the particle stiffness for the discrete element modelling in order to perform realistic simulations of granular materials in the case of linear contact model. For that, laboratory tests and numerical discrete element modelling of triaxial compression tests have been carried out on two different non-cohesive soils i.e. poorly graded fine sand and gap graded coarse sand. The results of experimental tests are used to calibrate the numerical model. It is found that the numerical results are qualitatively and quantitatively in good agreement with the laboratory tests results. Moreover, the results show that the stress dependent of soil behaviour can be reproduced well by assigning the particle stiffness as a function of the particle size particularly for gap graded soil.