The Trauzl lead block test allows the determination of the approximate performance of explosives in blasting applications by measuring the volume increase(expansion)that is produced by the detonation of an explosive c...The Trauzl lead block test allows the determination of the approximate performance of explosives in blasting applications by measuring the volume increase(expansion)that is produced by the detonation of an explosive charge in the cavity of a lead block.In this paper,we reconsider the possibility of interpreting the Trauzl test results in terms of detonation parameters or quantities.The detonation parameters used in the analysis are calculated using the thermochemical code EXPLO5,while the hydrocode AUTODYN is used to simulate the effect of explosive charge density and reaction rate on the results of the Trauzl test.The increase in the volume of the lead block cavity was found to correlate best with the product of the detonation heat and the root of the volume of detonation products.Hydrocode simulation showed that the density of explosive charge and the rate of explosive decomposition affect the dynamics of the interaction of the detonation product and the lead block,and consequently the lead block cavity volume increase.展开更多
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur...To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.展开更多
Automotive-grade Complementary Metal-Oxide-Semiconductor(CMOS)sensors play a crucial role in automotive electronic systems,especially in the context of the rapid development of Advanced Driver Assistance Systems(ADAS)...Automotive-grade Complementary Metal-Oxide-Semiconductor(CMOS)sensors play a crucial role in automotive electronic systems,especially in the context of the rapid development of Advanced Driver Assistance Systems(ADAS)and autonomous driving technologies.Their performance is directly related to the safety and reliability of vehicles.However,automobiles will face a variety of complex environmental conditions during the actual operation,such as high temperature,low temperature,vibration,humidity changes,and light changes,which may have an impact on the performance of CMOS sensors.Therefore,it is of great significance to study the performance of automotive-grade CMOS sensors in different environments.展开更多
A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, co...A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, compressed air, glycol water solution and water as the heating fluids, and air and water as the cooling fluids. The heat transfer performance testing of heat exchangers can be conducted not only for a conventional one heating fluid to one cooling fluid, but also for a compound air cooling heat exchanger with two or three heating fluids in parallel or in series. The control and measurement system is implemented based on a LabVIEW software platform, consisting of the data acquisition and process system, and the automotive operation and control system. By using advanced measuring instruments combined with sound computer software control, the testing system has characteristics of a compact structure, high accuracy, a wide range of testing scope and a friendly operation interface. The uncertainty of the total heat transfer coefficient K is less than 5%. The testing system provides a reliable performance testing platform for designing and developing new heat exchangers.展开更多
To realize automatic control of automobile transmission performance test stand Methods The automatic control technique of the lubricant temperature,the program- controll- edautomaticshifting of the transmission,the c...To realize automatic control of automobile transmission performance test stand Methods The automatic control technique of the lubricant temperature,the program- controll- edautomaticshifting of the transmission,the continuous adjusting of revolution speed and load, data-acquisition and data real-time processing were adopted.Results The lubricant temperature was controlled at the set temperature ±2℃.The automatic shifting of the trans- mission is simple,reliable and accurate.The automatic adjusting of load and rotation speed is rapidandaccurate,the torque divergence is ±1N·m,the rotation speed divergence is ±5r/min Conclusion The four kinds of techniques are applied into the automobile transmission perfor- mance test stand successfully. mancetest stand successfully.展开更多
A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz...A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.展开更多
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous ...Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous components offer alternatives that may avoid such failures.A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics.Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used.However,a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported.In this study,a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing.Critical joints were designed and verified.Numerical models were established and calibrated to estimate frame shear forces.The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms.Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall.Drift distribution becomes more uniform with height.Concrete cracks and damage occurs in desired areas.The infilled rocking wall frame offers a promising approach to achieving seismic resilience.展开更多
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ...Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.展开更多
Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway...Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper,and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples.Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways,namely the CRTS I,the CRTS II and the CRTS III ballastless tracks,the double-block ballastless track and the ballasted track,the test platform is established strictly according to the construction standard of Chinese high-speed railways.Three kinds of effective loading methods are employed,including the real bogie loading,multi-point loading and the impact loading.Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement,acceleration,pressure,structural strain and deformation,etc.Utilizing this test platform,both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated,being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways.As examples,three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways.Some interesting phenomena and meaningful results are captured by the developed test platform,which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure.展开更多
Investigation of seismic performance of buildings with STRP (scrap tire rubber pad) seismic isolators by means of pseudo-dynamic tests and numerical simulation is presented. The isolated building is numerically mode...Investigation of seismic performance of buildings with STRP (scrap tire rubber pad) seismic isolators by means of pseudo-dynamic tests and numerical simulation is presented. The isolated building is numerically modeled, while the base isolation layer is considered as the experimental substructure in the pseudo-dynamic tests. The test result verifies that the STRP isolator shows acceptable shear deformation performance predicted by the design methods, and demonstrated that seismic isolation using STRP works as a protective measure to provide enhanced seismic performance of the building indicated by the reduction of top floor absolute acceleration, drift and base shear as designated.展开更多
To improve the transmission accuracy and stiffness of the ball cycloid reducer, the authors developed a novel cycloid ball reducer, which uses a full complement ball as its gear teeth. Ceramic balls are used to get be...To improve the transmission accuracy and stiffness of the ball cycloid reducer, the authors developed a novel cycloid ball reducer, which uses a full complement ball as its gear teeth. Ceramic balls are used to get better performance in severe working conditions. A simple synthesis method was also found to determine the raceway forms and compute the contact forces among the balls and raceways. The Contact Stress Analysis (CSA) computer program was used to optimize the design of the reducer. In this paper, the following topics are covered: (1) Study of the geometry of the raceways. (2) Analyses of the principal curvature of the raceways are also accomplished. In addition, the modification of the raceway is put forward. (3) The contact forces and the reducer efficiency are evaluated. (4) Study of the performance of ceramic balls used in the CBR. A reducer using the above design technique was tested and the performances show that the reducer has high precision and rigidity. An increase of more than 50 percent transmission power was realized in the new gearing.展开更多
Energy-absorbing rockbolts have been widely adopted in burst-prone excavation support, and their serviceability is closely related to the frequency and magnitude of seismic events. In this research, the splittube drop...Energy-absorbing rockbolts have been widely adopted in burst-prone excavation support, and their serviceability is closely related to the frequency and magnitude of seismic events. In this research, the splittube drop test with varying impact energy was conducted to reproduce the dynamic performance of MP1rockbolts under a wide range of seismic event magnitudes. The test results showed that the impact process could be subdivided into four distinct stages, i.e. mobilization, strain hardening, plastic flow(ductile), and rebound stage, of which strain hardening and plastic flow are the primary energy absorbing stages. As the impact energy per drop increases from 8.1 to 46.7 k J, the strain rate of the shank varies between 1.20 and 2.70 s^(-1), and the average impact load is between 240 and 270kN, which may be considered as constant. The MP1 rockbolt has a cumulative maximum energy absorption(CMEA) of 31.9–40.0 k J/m, with an average of 35.0 k J/m, and the elongation rate is 11.4%–14.7%, with an average of 12.7%, both of which are negatively correlated with the impact energy per drop. Regression analysis shows that energy absorption and shank elongation, as well as momentum input and impact duration,conform to the linear relationship. The complete dynamic capacity envelope of MP1 rockbolts is proposed, which reflects the dynamic bearing capacity, elongation, and distinct stages. This study is helpful to better understand the dynamic characteristics of energy-absorbing rockbolts and assist design engineers in robust reinforcement systems design to mitigate rockburst damage in seismically active underground excavations.展开更多
Tractor hydraulic fluids are tested to maximize their performance levels and to ensure manufacturer′s standards are met.Common tractor hydraulic fluid tests include: Gear Wear Protection,Brake Chatter Reduction,Wet-C...Tractor hydraulic fluids are tested to maximize their performance levels and to ensure manufacturer′s standards are met.Common tractor hydraulic fluid tests include: Gear Wear Protection,Brake Chatter Reduction,Wet-Clutch Capacity,and Pump Performance tests.These tests are run by Southwest Research Institute,in the U.S.A.,for tractors built by John Deere and Case-New Holland.This paper details current methods for evaluating tractor hydraulic fluids.The tests that are described utilize full size equipment and were developed by the tractor′s original equipment manufacturers(OEMs).展开更多
Background and Aim: Given the dramatic decline in the ability of test due to test anxiety, the goal of this study was to evaluate the relationship between test anxiety and academic performances in students. Materials ...Background and Aim: Given the dramatic decline in the ability of test due to test anxiety, the goal of this study was to evaluate the relationship between test anxiety and academic performances in students. Materials and Methods: This descriptive-analytical study was performed on 216 Iranian nursing and midwifery students in 2011-2012, utilizing Sarason Anxiety Inventory, demographic checklist and the average mark of students in the period of midterm and final exam. Multinomial logistic regression analyses by reporting odds ratios and their 95% confidence intervals were performed by SPSS17 software to assess the relationship between test anxiety and academic performances. Results: Mild, moderate and sever test anxiety was observed in 30.6, 43.1 and 26.4 percent of students respectively. Test anxiety was significantly related to academic performance (average), major and city. Also, there was 52.9% decrease for odds of having sever anxiety (compared to mild anxiety) with 1 point increase in average (OR = 0.471, 95% CI = (0.298 - 0.745) and p = 0.001). Conclusions: Due to inverse relationship between test anxiety and academic performance, performing preventive programs such as in time treatment of anxiety, empowering the students to deal with anxiety and conducting consulting services for how to studying are very important. Consequently it would be a big step in decreasing the test anxiety and therefore in improving the academic performance.展开更多
In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, t...In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED.展开更多
The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix develop...The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.展开更多
The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and th...The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.展开更多
Large diameter fans with low solidity are widely used in automotive application for engine cooling. Their designs with small chord length help reducing the torque on the electrical motor and providing a good aerodynam...Large diameter fans with low solidity are widely used in automotive application for engine cooling. Their designs with small chord length help reducing the torque on the electrical motor and providing a good aerodynamic compromise between several operating conditions, some of these being at high flow rate. Their global performances are measured according to the ISO standard DP 5801, which allows comparison of results from different facilities. However, some variations in global performances are observed when considering results from two different test rigs. On a fan selected for the purpose of this study, up to 6 % of efficiency is lost on the worst case. As efficiency is more than ever a key factor to select a component, some experimental and numerical investigations were conducted to analyze the fan behavior on each facility. Two sets of measurement and simulation are performed and compared. Geometries considered for the domain of computation include the test rig plenum, the torquemeter, the ground and a large domain for the atmospheric conditions. The exact fan geometry with tip clearance and under-hub ribs is also considered. Numerical results show a good agreement with experiment in both cases when convergence is reached and for low flow rate when computations are switched to unsteady mode. Comparisons show that simulations are able to capture the different fan behaviors depending on the confguration and those efficiency losses previously observed are correctly predicted. These results are further analyzed to perform some post-processing. Blade loading remains identical for both cases but disparities appear in the wake and its interaction with the surrounding. Tiny details that are often neglected during experiment and/or simulation appear to be the cause of slight variations. Position of the torquemeter and shape of the plenum are among the parameters that various and that have cumulative effects. Efficiency being a ration of pressure and torque, variations are rather important. Finally, these results are discussed in terms of rules for conception and a new geometry less sensible to loss of efficiency is proposed.展开更多
Customizing applications through program configuration options has been proved by many open-source and commercial projects as one of the best practices in software engineering. However, traditional performance testing...Customizing applications through program configuration options has been proved by many open-source and commercial projects as one of the best practices in software engineering. However, traditional performance testing is not in synch with this industrial practice. Traditional performance testing techniques consider program inputs as the only external factor. It ignores the performance influence of configuration options. This study aims to stimulate research interest in performance testing in the context of configurable software systems by answering three research questions. That is, why it is necessary to conduct research in performance testing, what are the state-of-the-art techniques, and how do we conduct performance testing research in configurable software systems. In this study, we examine the unique characteristics and challenges of performance testing research in configurable software systems. We review and discuss research topics on the performance bug study, performance anti-patterns, program analysis, and performance testing. We share the research findings from the empirical study and outline the opening opportunities for new and advanced researchers to contribute to the research community.展开更多
The field tot of performance of mine main fan is going to become an independance requirement of coal mlue progressively and to be taken seriously. According to the fan-house with air gate closed to the fan inlet, this...The field tot of performance of mine main fan is going to become an independance requirement of coal mlue progressively and to be taken seriously. According to the fan-house with air gate closed to the fan inlet, this paper analyses the influence of the rapid changing air flow field upon field test and puts forward a reasonable test scheme.展开更多
基金supported by the Croatian Science Foundation (HRZZ)under the projects IP-2019-04-1618"An improved non-ideal detonation model of commercial explosives" (NEIDEMO)。
文摘The Trauzl lead block test allows the determination of the approximate performance of explosives in blasting applications by measuring the volume increase(expansion)that is produced by the detonation of an explosive charge in the cavity of a lead block.In this paper,we reconsider the possibility of interpreting the Trauzl test results in terms of detonation parameters or quantities.The detonation parameters used in the analysis are calculated using the thermochemical code EXPLO5,while the hydrocode AUTODYN is used to simulate the effect of explosive charge density and reaction rate on the results of the Trauzl test.The increase in the volume of the lead block cavity was found to correlate best with the product of the detonation heat and the root of the volume of detonation products.Hydrocode simulation showed that the density of explosive charge and the rate of explosive decomposition affect the dynamics of the interaction of the detonation product and the lead block,and consequently the lead block cavity volume increase.
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200494)China Postdoctoral Science Foundation(Grant No.2021M701725)+3 种基金Jiangsu Postdoctoral Research Funding Program(Grant No.2021K522C)Fundamental Research Funds for the Central Universities(Grant No.30919011246)National Natural Science Foundation of China(Grant No.52278188)Natural Science Foundation of Jiangsu Province(Grant No.BK20211196)。
文摘To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.
文摘Automotive-grade Complementary Metal-Oxide-Semiconductor(CMOS)sensors play a crucial role in automotive electronic systems,especially in the context of the rapid development of Advanced Driver Assistance Systems(ADAS)and autonomous driving technologies.Their performance is directly related to the safety and reliability of vehicles.However,automobiles will face a variety of complex environmental conditions during the actual operation,such as high temperature,low temperature,vibration,humidity changes,and light changes,which may have an impact on the performance of CMOS sensors.Therefore,it is of great significance to study the performance of automotive-grade CMOS sensors in different environments.
基金The National Natural Science Foundation of China(No. 50976022)
文摘A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, compressed air, glycol water solution and water as the heating fluids, and air and water as the cooling fluids. The heat transfer performance testing of heat exchangers can be conducted not only for a conventional one heating fluid to one cooling fluid, but also for a compound air cooling heat exchanger with two or three heating fluids in parallel or in series. The control and measurement system is implemented based on a LabVIEW software platform, consisting of the data acquisition and process system, and the automotive operation and control system. By using advanced measuring instruments combined with sound computer software control, the testing system has characteristics of a compact structure, high accuracy, a wide range of testing scope and a friendly operation interface. The uncertainty of the total heat transfer coefficient K is less than 5%. The testing system provides a reliable performance testing platform for designing and developing new heat exchangers.
文摘To realize automatic control of automobile transmission performance test stand Methods The automatic control technique of the lubricant temperature,the program- controll- edautomaticshifting of the transmission,the continuous adjusting of revolution speed and load, data-acquisition and data real-time processing were adopted.Results The lubricant temperature was controlled at the set temperature ±2℃.The automatic shifting of the trans- mission is simple,reliable and accurate.The automatic adjusting of load and rotation speed is rapidandaccurate,the torque divergence is ±1N·m,the rotation speed divergence is ±5r/min Conclusion The four kinds of techniques are applied into the automobile transmission perfor- mance test stand successfully. mancetest stand successfully.
基金supported by the National Defense Science and Technology Innovation Zone Project(No.18-H863-05-ZT-001-018-09)
文摘A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.
基金Natural Science Foundation of China under Grant Nos.51178342 and 51578314
文摘Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous components offer alternatives that may avoid such failures.A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics.Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used.However,a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported.In this study,a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing.Critical joints were designed and verified.Numerical models were established and calibrated to estimate frame shear forces.The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms.Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall.Drift distribution becomes more uniform with height.Concrete cracks and damage occurs in desired areas.The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
基金supported by the National Natural Science Foundation of China(No.52079133)CRSRI Open Research Program(Program SN:CKWV2019746/KY)+1 种基金the project of Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(QTKS0034W23291)the Youth Innovation Promotion Association CAS.
文摘Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.
基金This work was supported by the National Natural Science Foundation of China[Grant Nos.11790283,51978587,51708457]the Program of Introducing Talents of Discipline to Universities(111 Project)[Grant No.B16041].
文摘Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper,and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples.Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways,namely the CRTS I,the CRTS II and the CRTS III ballastless tracks,the double-block ballastless track and the ballasted track,the test platform is established strictly according to the construction standard of Chinese high-speed railways.Three kinds of effective loading methods are employed,including the real bogie loading,multi-point loading and the impact loading.Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement,acceleration,pressure,structural strain and deformation,etc.Utilizing this test platform,both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated,being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways.As examples,three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways.Some interesting phenomena and meaningful results are captured by the developed test platform,which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure.
文摘Investigation of seismic performance of buildings with STRP (scrap tire rubber pad) seismic isolators by means of pseudo-dynamic tests and numerical simulation is presented. The isolated building is numerically modeled, while the base isolation layer is considered as the experimental substructure in the pseudo-dynamic tests. The test result verifies that the STRP isolator shows acceptable shear deformation performance predicted by the design methods, and demonstrated that seismic isolation using STRP works as a protective measure to provide enhanced seismic performance of the building indicated by the reduction of top floor absolute acceleration, drift and base shear as designated.
文摘To improve the transmission accuracy and stiffness of the ball cycloid reducer, the authors developed a novel cycloid ball reducer, which uses a full complement ball as its gear teeth. Ceramic balls are used to get better performance in severe working conditions. A simple synthesis method was also found to determine the raceway forms and compute the contact forces among the balls and raceways. The Contact Stress Analysis (CSA) computer program was used to optimize the design of the reducer. In this paper, the following topics are covered: (1) Study of the geometry of the raceways. (2) Analyses of the principal curvature of the raceways are also accomplished. In addition, the modification of the raceway is put forward. (3) The contact forces and the reducer efficiency are evaluated. (4) Study of the performance of ceramic balls used in the CBR. A reducer using the above design technique was tested and the performances show that the reducer has high precision and rigidity. An increase of more than 50 percent transmission power was realized in the new gearing.
基金CCTEG Coal Mining Research Institute(No.TDKC-2022-MS-01)the National Natural Science Foundation of China(No.52274123)the Mining Education Australia(MEA),Collaborative Research Grant Scheme(No.RS-59041).
文摘Energy-absorbing rockbolts have been widely adopted in burst-prone excavation support, and their serviceability is closely related to the frequency and magnitude of seismic events. In this research, the splittube drop test with varying impact energy was conducted to reproduce the dynamic performance of MP1rockbolts under a wide range of seismic event magnitudes. The test results showed that the impact process could be subdivided into four distinct stages, i.e. mobilization, strain hardening, plastic flow(ductile), and rebound stage, of which strain hardening and plastic flow are the primary energy absorbing stages. As the impact energy per drop increases from 8.1 to 46.7 k J, the strain rate of the shank varies between 1.20 and 2.70 s^(-1), and the average impact load is between 240 and 270kN, which may be considered as constant. The MP1 rockbolt has a cumulative maximum energy absorption(CMEA) of 31.9–40.0 k J/m, with an average of 35.0 k J/m, and the elongation rate is 11.4%–14.7%, with an average of 12.7%, both of which are negatively correlated with the impact energy per drop. Regression analysis shows that energy absorption and shank elongation, as well as momentum input and impact duration,conform to the linear relationship. The complete dynamic capacity envelope of MP1 rockbolts is proposed, which reflects the dynamic bearing capacity, elongation, and distinct stages. This study is helpful to better understand the dynamic characteristics of energy-absorbing rockbolts and assist design engineers in robust reinforcement systems design to mitigate rockburst damage in seismically active underground excavations.
文摘Tractor hydraulic fluids are tested to maximize their performance levels and to ensure manufacturer′s standards are met.Common tractor hydraulic fluid tests include: Gear Wear Protection,Brake Chatter Reduction,Wet-Clutch Capacity,and Pump Performance tests.These tests are run by Southwest Research Institute,in the U.S.A.,for tractors built by John Deere and Case-New Holland.This paper details current methods for evaluating tractor hydraulic fluids.The tests that are described utilize full size equipment and were developed by the tractor′s original equipment manufacturers(OEMs).
文摘Background and Aim: Given the dramatic decline in the ability of test due to test anxiety, the goal of this study was to evaluate the relationship between test anxiety and academic performances in students. Materials and Methods: This descriptive-analytical study was performed on 216 Iranian nursing and midwifery students in 2011-2012, utilizing Sarason Anxiety Inventory, demographic checklist and the average mark of students in the period of midterm and final exam. Multinomial logistic regression analyses by reporting odds ratios and their 95% confidence intervals were performed by SPSS17 software to assess the relationship between test anxiety and academic performances. Results: Mild, moderate and sever test anxiety was observed in 30.6, 43.1 and 26.4 percent of students respectively. Test anxiety was significantly related to academic performance (average), major and city. Also, there was 52.9% decrease for odds of having sever anxiety (compared to mild anxiety) with 1 point increase in average (OR = 0.471, 95% CI = (0.298 - 0.745) and p = 0.001). Conclusions: Due to inverse relationship between test anxiety and academic performance, performing preventive programs such as in time treatment of anxiety, empowering the students to deal with anxiety and conducting consulting services for how to studying are very important. Consequently it would be a big step in decreasing the test anxiety and therefore in improving the academic performance.
基金Projects(51575115,51775122)supported by the National Natural Science Foundation of China
文摘In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED.
文摘The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.
基金Project(N2018G034)supported by China Railway Corporation。
文摘The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.
文摘Large diameter fans with low solidity are widely used in automotive application for engine cooling. Their designs with small chord length help reducing the torque on the electrical motor and providing a good aerodynamic compromise between several operating conditions, some of these being at high flow rate. Their global performances are measured according to the ISO standard DP 5801, which allows comparison of results from different facilities. However, some variations in global performances are observed when considering results from two different test rigs. On a fan selected for the purpose of this study, up to 6 % of efficiency is lost on the worst case. As efficiency is more than ever a key factor to select a component, some experimental and numerical investigations were conducted to analyze the fan behavior on each facility. Two sets of measurement and simulation are performed and compared. Geometries considered for the domain of computation include the test rig plenum, the torquemeter, the ground and a large domain for the atmospheric conditions. The exact fan geometry with tip clearance and under-hub ribs is also considered. Numerical results show a good agreement with experiment in both cases when convergence is reached and for low flow rate when computations are switched to unsteady mode. Comparisons show that simulations are able to capture the different fan behaviors depending on the confguration and those efficiency losses previously observed are correctly predicted. These results are further analyzed to perform some post-processing. Blade loading remains identical for both cases but disparities appear in the wake and its interaction with the surrounding. Tiny details that are often neglected during experiment and/or simulation appear to be the cause of slight variations. Position of the torquemeter and shape of the plenum are among the parameters that various and that have cumulative effects. Efficiency being a ration of pressure and torque, variations are rather important. Finally, these results are discussed in terms of rules for conception and a new geometry less sensible to loss of efficiency is proposed.
文摘Customizing applications through program configuration options has been proved by many open-source and commercial projects as one of the best practices in software engineering. However, traditional performance testing is not in synch with this industrial practice. Traditional performance testing techniques consider program inputs as the only external factor. It ignores the performance influence of configuration options. This study aims to stimulate research interest in performance testing in the context of configurable software systems by answering three research questions. That is, why it is necessary to conduct research in performance testing, what are the state-of-the-art techniques, and how do we conduct performance testing research in configurable software systems. In this study, we examine the unique characteristics and challenges of performance testing research in configurable software systems. We review and discuss research topics on the performance bug study, performance anti-patterns, program analysis, and performance testing. We share the research findings from the empirical study and outline the opening opportunities for new and advanced researchers to contribute to the research community.
文摘The field tot of performance of mine main fan is going to become an independance requirement of coal mlue progressively and to be taken seriously. According to the fan-house with air gate closed to the fan inlet, this paper analyses the influence of the rapid changing air flow field upon field test and puts forward a reasonable test scheme.