期刊文献+
共找到521篇文章
< 1 2 27 >
每页显示 20 50 100
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
1
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
下载PDF
A novel nano-grade organosilicon polymer:Improving airtightness of compressed air energy storage in hard rock formations
2
作者 Zhuyan Zheng Guibin Wang +7 位作者 Chunhe Yang Hongling Ma Liming Yin Youqiang Liao Kai Zhao Zhen Zeng Hang Li Yue Han 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期305-321,共17页
Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a ... Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications. 展开更多
关键词 compressed air energy storage LINING Permeability Transient pulse method Hard rock cavern Nano-grade organosilicon polymer coating
下载PDF
Adaptive linear active disturbance-rejection control strategy reduces the impulse current of compressed air energy storage connected to the grid
3
作者 Jianhui Meng Yaxin Sun Zili Zhang 《Global Energy Interconnection》 EI CSCD 2024年第5期577-589,共13页
The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid reg... The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process. 展开更多
关键词 compressed air energy storage Linear active disturbance-rejection control Smooth grid connection Impulse current Adaptive adjustment of bandwidth parameters
下载PDF
Design issues for compressed air energy storage in sealed underground cavities 被引量:12
4
作者 P.Perazzelli G.Anagnostou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第3期314-328,共15页
Compressed air energy storage (CAES) systems represent a new technology for storing very large amount of energy. A peculiarity of the systems is that gas must be stored under a high pressure (p - 10-30 MPa). A lin... Compressed air energy storage (CAES) systems represent a new technology for storing very large amount of energy. A peculiarity of the systems is that gas must be stored under a high pressure (p - 10-30 MPa). A lined rock cavern (LRC) in the form of a tunnel or shaft can be used within this pressure range. The rock mass surrounding the opening resists the internal pressure and the lining ensures gas tightness. The present paper investigates the key aspects of technical feasibility of shallow LRC tunnels or shafts under a wide range of geotechnical conditions. Results show that the safety with respect to uplift failure of the rock mass is a necessary but not a sufficient condition for assessing feasibility. The deformation of the rock mass should also be kept sufficiently small to preserve the integrity of the lining and, especially, its tightness. If the rock is not sufficiently stiff, buckling or fatigue failure of the steel lining becomes more decisive when evaluating the feasible operating air pressure. The design of the concrete plug that seals the compressed air stored in the container is another demanding task. Numerical analyses indicate that in most cases, the stability of the rock mass under the plug loading is not a decisive factor for plug design. 展开更多
关键词 compressed air energy storage (caes)TunnelsLiningConcrete plugFeasibility assessment
下载PDF
Air tightness of compressed air storage energy caverns with polymer sealing layer subjected to various air pressures 被引量:5
5
作者 Shikang Qin Caichu Xia Shuwei Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2105-2116,共12页
During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and proper... During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and properly evaluate air tightness of polymer sealing caverns,the air-pressure-related air density and permeability must be considered.In this context,the high-pressure air penetration in the polymer sealing layer is studied in consideration of thermodynamic change of the cavern structure during the system operation.The air tightness model of compressed air storage energy caverns is then established.In the model,the permeability coefficient and air density of sealing layer vary with air pressure,and the effectiveness of the model is verified by field data in two test caverns.Finally,a compressed air storage energy cavern is taken as an example to understand the air tightness.The air leakage rate in the caverns is larger than that using air-pressure-independent permeability coefficient and air density,which is constant and small in the previous leakage rate calculation.Under the operating pressure of 4.5-10 MPa,the daily air leakage in the compressed air storage energy cavern of Yungang Mine with high polymer butyl rubber as the sealing material is 0.62%,which can meet the sealing requirements of compressed air storage energy caverns.The air tightness of the polymer sealing cavern is mainly affected by the cavern operating pressure,injected air temperature,cavern radius,and sealing layer thickness.The cavern air leakage rate will be decreased to reduce the cavern operating pressure the injection air temperature,or the cavern radius and sealing layer thickness will be increased. 展开更多
关键词 compressed air storage energy Polymer sealing layer air tightness Permeability coefficient air density
下载PDF
Research on Storage Capacity of Compressed Air Pumped Hydro Energy Storage Equipment 被引量:4
6
作者 Jingtian Bi Tong Jiang +1 位作者 Weili Chen Xian Ma 《Energy and Power Engineering》 2013年第4期26-30,共5页
Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compres... Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compressed air expanses pushing water to drive the hydro turbine for power generation. The novel storage equipment saves natural gas resources, reduces carbon emission, and improves the controllability and reliability. The principle of compressed air pumped hydro energy storage is introduced and its mathematical model is built. The storage and generation process of the novel equipment is analyzed using the model. The calculation formula of the storage power is deduced in theory in different situations of isothermal and adiabatic compression. The optimal storage scheme is given when the capacity and withstand pressure of the vessel is definitive, and the max available capacity and the equipment utilization efficiency evaluation of the scheme is given. 展开更多
关键词 Power storage compressed air energy storage HYDRAULIC EQUIPMENT Optimal Operation ISOTHERMAL PROCESS ADIABATIC PROCESS EQUIPMENT Utilization Efficiency
下载PDF
Performance Analysis of Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System Considering Off-Design Model of Compressor 被引量:3
7
作者 Xin He Huanran Wang +1 位作者 Feiyue Tao Gangqiang Ge 《Energy and Power Engineering》 2021年第4期11-18,共8页
<div style="text-align:justify;"> With the wide application of renewable energy, energy storage technology has become a research hotspot. In order to overcome the shortcomings of energy loss caused by ... <div style="text-align:justify;"> With the wide application of renewable energy, energy storage technology has become a research hotspot. In order to overcome the shortcomings of energy loss caused by compression heating in compressed air energy storage technology, a novel constant-pressure pumped hydro combined with compressed air energy storage system was proposed. To deepen the understanding of the system and make the analysis closer to reality, this paper adopted an off-design model of the compressor to calculate and analyze the effect of key parameters on system thermodynamics performance. In addition, the results of this paper were compared with previous research results, and it was found that the current efficiency considering the off-design model of compressor was generally 2% - 5% higher than the previous efficiency. With increased preset pressure or with decreased terminal pressure, both the previous efficiency and current efficiency of the system increased. The exergy destruction coefficient of the throttle valve reached 4%. System efficiency was more sensitive to changes in water pump efficiency and hydroturbine efficiency. </div> 展开更多
关键词 energy storage compressed air energy storage Off-Design Model
下载PDF
Response Characteristics of Flexible Risers in Offshore Compressed Air Energy Storage Systems
8
作者 Bo Hu Zhiwen Wang +2 位作者 Hongwang Du Wei Xiong Zuwen Wang 《Journal of Marine Science and Application》 CSCD 2019年第3期353-365,共13页
With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy ... With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy storage (OCAES) is a novel flexible-scale energy storage technology that is suitable for marine renewable energy storage in coastal cities, islands, offshore platforms, and offshore renewable energy farms. For deep-water applications, a marine riser is necessary for connecting floating platforms and subsea systems. Thus, the response characteristics of marine risers are of great importance for the stability and safety of the entire OCAES system. In this study, numerical models of two kinds of flexible risers, namely, catenary riser and lazy wave riser, are established in OrcaFlex software. The static and dynamic characteristics of the catenary and the lazy wave risers are analyzed under different environment conditions and internal pressure levels. A sensitivity analysis of the main parameters affecting the lazy wave riser is also conducted. Results show that the structure of the lazy wave riser is more complex than the catenary riser;nevertheless, the former presents better response performance. 展开更多
关键词 OFFSHORE compressed air energy storage Flexible RISER MARINE energy CATENARY Lazy WAVE Sensitivity analysis
下载PDF
Performance Evaluation of Compressed Air Energy Storage Using TRNSYS
9
作者 R.Velraj V.Gayathri A.Thenmozhi 《Journal of Electronic Science and Technology》 CAS CSCD 2015年第4期361-366,共6页
The appreciable economic growth in some of the developing countries like India in the recent years, towards providing energy security causes large environmental impact. Renewable Energy (RE) is being seen as one of ... The appreciable economic growth in some of the developing countries like India in the recent years, towards providing energy security causes large environmental impact. Renewable Energy (RE) is being seen as one of the important means to meet the growing power needs of the economy while enhancing energy security and providing opportunities for mitigating greenhouse gas emissions. However, RE sources are highly intermittent in nature. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. Hence at this juncture, it is necessary to explore the benefits of suitable Energy storage technologies. Compressed air energy storage (CAES) is a commercial, utility-scale technology that provides long-duration energy storage with fast ramp rates and good part-load operation. It is a promising storage technology for balancing the large-scale penetration of renewable energies, such as wind and solar power, into electric grids. Considering the potential of CAES storage, the present work, a thermodynamic model is developed with suitable assumptions and the simulation analysis is performed using transient system simulation (TRNSYS) v17 software. The system performanee is compared by considering the recovery during the heat of compression using a thermal storage system and without considering the heat recovery. The overall turnaround efficiency of the system without considering the thermal energy storage (TES) system is 57 % and with TES system the efficiency is increased to 70%. 展开更多
关键词 compressed air energy storage solarcollector thermal energy storage.
下载PDF
Research on New Compressed Air Energy Storage Technology
10
作者 Xian Ma Jingtian Bi +2 位作者 Weili Chen Zhisen Li Tong Jiang 《Energy and Power Engineering》 2013年第4期22-25,共4页
In recent years, wind power generation and photovoltaic power generation have been developing rapidly, and the installed capacity of the new resources generation has been keeping a fast growth every year. But with the... In recent years, wind power generation and photovoltaic power generation have been developing rapidly, and the installed capacity of the new resources generation has been keeping a fast growth every year. But with the incorporation into the grid, the new resources generation that has the properties such as randomness and volatility causes certain risks to the power grid, which results in the falling of the incorporation proportion instead of rising. This paper describes the current status and development problems of the new energy in China, and gives a brief introduction of characteristics of various energy storage technologies. This paper focuses on the analysis of the compressed air energy storage technology in recent years and new developments and the latest technology at home and abroad, additionally, the paper introduces a new concept of the compressed air energy storage system. 展开更多
关键词 NEW energy WIND POWER POWER storage Technology compressed air energy storage
下载PDF
Design and Development of Wind-Solar Hybrid Power System with Compressed Air Energy Storage for Voltage and Frequency Regulations
11
作者 Banet Masenga Jean Byiringiro +3 位作者 Charles Kagiri Edwell Tafara Daniel Ngoma Gnoumou Aristid 《Journal of Power and Energy Engineering》 2023年第2期1-24,共24页
The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results ... The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results to the load shading issue that led to the voltage and frequency instability. In additional to that, the high proportions of erratic renewable energy sources can lead to erratic frequency changes which affect the grid stability. In order to reduce this effect, the energy storage system is commonly used in most wind-solar energy systems to balance the voltage and frequency instability during load variations. One of the innovative energy storage systems is the compressed air energy storage system (CAES) for wind and solar hybrid energy system and this technology is the key focus in this research study. The aim of this research was to examine the system configuration of the CAES system through modelling and experimental approach with PID controller design for regulating the voltage and frequency under different load conditions. The essential elements and the entire system have been presented in this work as thorough modelling in the MATLAB/Simulink environment for different load conditions. The developed model was tested through an experimental workbench using the developed prototype of the compressed air storage in the Siemens Lab at DeKUT and explored the consequence of the working parameters on the system proficiency and the model accuracy. The performance of the system for the developed prototype of CAES system was validated using results from an experimental workbench with MATLAB/Simulink R2022b simulation. The modeling and experimental results, shows that the frequency fluctuation and voltage drop of the developed CAES system during load variations was governed by the I/P converter using a PID_Compact controller programed in the TIA Portal V17 software and downloaded into PLC S7 1200. Based on these results, the model can be applied as a basis for the performance assessment of the compressed air energy storage system so as to be included in current technology of wind and solar hybrid energy systems. 展开更多
关键词 VOLTAGE FREQUENCY compressed air energy storage Load Variations PID Control I/P Converter Valve
下载PDF
Looping of Hybrid PV/Wind Turbine Power Plants by a Compressed Air Storage System and Creation of Artificial Wind to Ensure the Permanent Availability of Energy in the Tropical Zones
12
作者 Bello Pierre Ngoussandou Hamandjoda Oumarou Noel Djongyang 《Journal of Energy and Power Engineering》 2018年第2期57-65,共9页
In general, the energy storage in facilities to intermittent sources is provided by a battery of accumulators. Having found that the duration of life of chemical accumulators is strongly shortened in the northern regi... In general, the energy storage in facilities to intermittent sources is provided by a battery of accumulators. Having found that the duration of life of chemical accumulators is strongly shortened in the northern regions of Cameroon and that this has a considerable impact on the operating costs and the reliability of power plants to intermittent sources, this work proposes to find an alternative to these chemical accumulators rendered vulnerable by the high temperatures. It reviews all energy storage techniques and makes a choice (the CAES (compressed air energy storage)) based on thermal robustness. It proposes a new technique of restitution of the energy by producing an artificial wind from the compressed air. The feedback loop thus obtained by the compressor-tank-wind subsystem is studied from a series of manipulations and its efficiency is determined. To automate the operation of this system, a controller is required. The operating logic of the controller is provided in function of the precise states of the load, the tank and the natural sources. 展开更多
关键词 Battery duration life compressed air energy storage artificial wind thermal robustness.
下载PDF
Development and technology status of energy storage in depleted gas reservoirs 被引量:1
13
作者 Jifang Wan Yangqing Sun +4 位作者 Yuxian He Wendong Ji Jingcui Li Liangliang Jiang Maria Jose Jurado 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期198-221,共24页
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a... Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs. 展开更多
关键词 Depleted gas reservoirs Technology and development Siting analysis Safety evaluation compressed air energy storage
下载PDF
计及AA-CAES与PTC集成的综合能源系统运行优化与性能分析 被引量:1
14
作者 吴迪 刘奥 +4 位作者 龚弟鑫 马帆帆 马立 韩中合 刘树华 《动力工程学报》 CAS CSCD 北大核心 2024年第1期138-147,156,共11页
为进一步发挥综合能源系统的多能互补优势,提出一种计及先进绝热压缩空气储能(AA-CAES)与槽式太阳能集热器(PTC)集成的综合能源系统(IES-PTC-CAES)优化运行策略。首先,对AA-CAES、PTC以及系统中其他设备进行分析并建立相应模型;进而以... 为进一步发挥综合能源系统的多能互补优势,提出一种计及先进绝热压缩空气储能(AA-CAES)与槽式太阳能集热器(PTC)集成的综合能源系统(IES-PTC-CAES)优化运行策略。首先,对AA-CAES、PTC以及系统中其他设备进行分析并建立相应模型;进而以经济性、环保性和能效性为优化目标,以设备运行的关键参数为优化变量,基于分时电价建立了协同优化策略,并通过K-means算法将模拟出的典型年负荷聚类为典型日负荷;最终,使用并行式的遗传算法对系统进行寻优,得到不同目标下IES-PTC-CAES的最优运行策略。结果表明:与参考系统相比,IES-PTC-CAES系统经济目标下总成本降低了14.61万元,环保目标下二氧化碳排放量减少了6194.38 kg。 展开更多
关键词 先进绝热压缩空气储能 槽式太阳能集热器 综合能源系统 遗传算法 协同优化
下载PDF
基于AA-CAES电站和综合需求响应的供暖期弃风消纳策略 被引量:1
15
作者 闫文文 文中 +3 位作者 王爽 李国祥 王博宇 吴艺 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期55-68,共14页
“双碳”目标背景下,为解决热电联产机组“以热定电”模式导致的大规模弃风问题,本文提出基于先进绝热压缩空气储能电站(advanced adiabatic compressed air energy storage,AA-CAES)和综合需求响应的综合能源系统(integrated energy sy... “双碳”目标背景下,为解决热电联产机组“以热定电”模式导致的大规模弃风问题,本文提出基于先进绝热压缩空气储能电站(advanced adiabatic compressed air energy storage,AA-CAES)和综合需求响应的综合能源系统(integrated energy system,IES)供暖期弃风消纳策略。首先,在“源-储”两侧建立热电联产机组与AA-CAES电站耦合运行模型,分析耦合运行实现热电解耦机理;其次,在“荷”侧引入价格型和替代型需求响应机制来探寻负荷侧优化系统调度潜力;然后,在IES中引入碳捕集系统和阶梯型碳交易机制来约束碳排放,并在碳排放量最少、综合成本最低为目标构建IES运行基础上,引入模糊机会规划约束模型来分析风、光不确定性对系统调度影响;最后,利用西北某地区实际数据进行算例验证。结果表明:热电机组与AA-CAES电站耦合运行相较于未耦合运行可提高风电消纳率84.55%、降低总成本11.42%、减少碳排放20.28%;综合需求响应机制的引入可进一步提高风电消纳率35.00%、降低总成本20.93%、减少碳排放24.43%;风光不确定性的上升会提高与外部电网的交互成本。 展开更多
关键词 热电联产 风电消纳 先进绝热压缩空气储能 综合需求响应 碳捕集系统
下载PDF
不同工况和应用场景下CAES-CFP三联产系统特性分析 被引量:1
16
作者 Jiajia Li Peigang Yan +4 位作者 Guowen Zhou Xingshuo Li Qiang Li Jinfu Liu Daren Yu 《Engineering》 SCIE EI CAS CSCD 2024年第3期233-245,共13页
To meet the goal of worldwide decarbonization,the transformation process toward clean and green energy structures has accelerated.In this context,coal-fired power plant(CFPP)and large-scale energy storage represented ... To meet the goal of worldwide decarbonization,the transformation process toward clean and green energy structures has accelerated.In this context,coal-fired power plant(CFPP)and large-scale energy storage represented by compressed air energy storage(CAES)technology,are tasked with increasing renewable resource accommodation and maintaining the power system security.To achieve this,this paper proposes the concept of a CFPP-CAES combined cycle and a trigenerative system based on that.Considering the working conditions of the CFPP,thermal characteristics of three typical operation modes were studied and some general regularities were identified.The results of various potential integration schemes discussion indicated that extracting water from low-temperature points in the feedwater system to cool pressurized air and simultaneously increase the backwater temperature is beneficial for improving performance.In addition,preheating the pressurized air before the air expanders via lowgrade water in the feedwater system as much as possible and reducing extracted steam contribute to increasing the efficiency.With the optimal integration scheme,2.85 tonnes of coal can be saved per cycle and the round-trip efficiency can be increased by 2.24%.Through the cogeneration of heat and power,the system efficiency can reach 77.5%.In addition,the contribution degree of the three compression heat utilization methods to the performance improvement ranked from high to low,is preheating the feedwater before the boiler,supplying heat,and flowing into the CFPP feedwater system.In the cooling energy generation mode,the system efficiency can be increased to over 69%.Regardless of the operation mode,the benefit produced by integration is further enhanced when the CFPP operates at higher operating conditions because the coupling points parameters are changed.In addition,the dynamic payback period can be shortened by 11.33 years and the internal rate of return increases by 5.20%under a typical application scenario.Regarding the effect of different application scenarios in terms of economics,investing in the proposed system is more appropriate in regions with multiple energy demands,especially heating demand.These results demonstrate the technical advantages of the proposed system and provide guiding principles for its design,operation,and project investment. 展开更多
关键词 compressed air energy storage CFPP-caes combined cycle Thermodynamic performance Technical economics
下载PDF
渗透率各向异性对CAESA系统季节性运行性能的影响
17
作者 罗贤 李毅 +2 位作者 喻浩 周骞 刘银江 《长沙理工大学学报(自然科学版)》 CAS 2024年第2期42-55,共14页
【目的】储层岩石渗透率通常呈各向异性分布,探究储层岩石渗透率各向异性对含水层压缩空气储能(compressed air energy storage in aquifers,CAESA)系统季节性运行性能的影响。【方法】建立CAESA系统概念模型和三维井群-储库数值模型,拟... 【目的】储层岩石渗透率通常呈各向异性分布,探究储层岩石渗透率各向异性对含水层压缩空气储能(compressed air energy storage in aquifers,CAESA)系统季节性运行性能的影响。【方法】建立CAESA系统概念模型和三维井群-储库数值模型,拟定3种储层渗透率各向异性分布方案,运用T2WELL/EOS3数值模拟软件,研究CAESA系统在季节性运行模式和渗透率各向异性条件下的流体传质和传热过程。【结果】储层渗透率各向异性会影响井筒-储层中的气相运移、流体交互和温压传递过程,进而影响系统的储能效率;当渗透率横纵比从2.0升高至10.0时,井筒的最大压力降低2.79 MPa,抽采阶段井口的最高温度升高2.06℃,井口两相流现象出现的时间从系统运行第435 d提前至第410 d,系统储能效率从89.8%降低至60.1%。【结论】对于渗透率各向异性程度较高的储层,可以通过增加初始气囊注入量或在后期进行补气来增加系统支撑压力,还可以采用注浆等工程手段,建立人造低渗边界以优化储层条件,提升系统储能效率。 展开更多
关键词 压缩空气储能 各向异性 渗透率 含水层 季节性循环 数值模拟
下载PDF
利用ORC-VCR回收压缩热的预冷式CAES系统性能分析 被引量:1
18
作者 张留淦 周颖驰 +2 位作者 孙文兵 叶楷 陈龙祥 《储能科学与技术》 CAS CSCD 北大核心 2024年第2期611-622,共12页
常规非绝热压缩空气储能(D-CAES)系统的储能过程通常采用四级以上的压缩机组以减少空气压缩功的消耗,导致产生大量的低品位压缩热直接排放到环境中,能源浪费严重。针对这一问题,本工作提出了一种采用有机朗肯循环-蒸汽压缩制冷(ORC-VCR... 常规非绝热压缩空气储能(D-CAES)系统的储能过程通常采用四级以上的压缩机组以减少空气压缩功的消耗,导致产生大量的低品位压缩热直接排放到环境中,能源浪费严重。针对这一问题,本工作提出了一种采用有机朗肯循环-蒸汽压缩制冷(ORC-VCR)回收压缩热的预冷式CAES系统(ORC-VCR-CAES),通过回收空气压缩阶段压缩机产生的压缩热来对压缩机入口空气进行预冷,可以进一步降低空气压缩功的消耗,提高系统的循环效率。对ORC-VCR-CAES耦合系统进行了热力学分析和经济性分析。结果表明,不同ORC-VCR循环工质对系统性能的影响较大,采用R152a作为循环工质的ORC-VCR-CAES系统综合性能最佳。其系统循环效率可达64.15%,比常规D-CAES系统提高了5.94%;在考虑外部废热能量输入时,ORC-VCR-CAES系统(火用)效率为51.90%,比常规D-CAES系统提高了4.81%。通过压缩热的回收有效减少了冷却器的(火用)损失,但压缩机组的(火用)损失仍然较大,是系统进一步优化的关键部件;经济性分析表明,当峰谷电价为1.26元和0.30元时,ORC-VCR-CAES系统的项目净现值相比于常规D-CAES系统可增加12.48%,且峰谷电价差越小,ORC-VCRCAES相比于常规D-CAES系统的项目净现值增加百分比越高。 展开更多
关键词 压缩空气储能 有机朗肯循环 蒸汽压缩制冷 热力学分析 经济性分析
下载PDF
地下水对CAES地下储气库气密性和围岩稳定性影响
19
作者 万发 蒋中明 +1 位作者 廖峻慧 李海峰 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第9期1899-1908,共10页
压缩空气储能(CAES)储气库密封和稳定是保证电站安全稳定运行的基础,储气库受力影响因素众多,且特性复杂,长期运行过程中气密性和稳定性的精准预测和评估一直是热点和难点。以考虑渗漏和传热过程的压缩空气热力学模型为非稳态边界、以... 压缩空气储能(CAES)储气库密封和稳定是保证电站安全稳定运行的基础,储气库受力影响因素众多,且特性复杂,长期运行过程中气密性和稳定性的精准预测和评估一直是热点和难点。以考虑渗漏和传热过程的压缩空气热力学模型为非稳态边界、以热流固耦合理论为核心建立了储气库多物理场耦合下气密性和稳定性联合分析模型,探讨了洞周围岩中的地下水对储气库气密性和稳定性的影响。研究成果表明:(1)地下水的存在可使储气库每个循环气体损失量降低78%;(2)衬砌结构主要受拉应力作用,顶部和底部出现了应力集中现象,需进行加密配筋;(3)岩体中存在地下水有助于强化储气库内的气体密封效果。 展开更多
关键词 压缩空气储能 热流固耦合 非稳态边界 应力应变 两相流
下载PDF
Design of a Centrifugal Compressor with Low Solidity Vaned Diffuser(LSVD) for Large-Scale Compressed Air Energy Storage(CAES) 被引量:5
20
作者 LIANG Qi ZUO Zhitao +2 位作者 ZHOU Xin TANG Hongtao CHEN Haisheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第2期423-434,共12页
Compressed Air Energy Storage(CAES) has tremendous promotional value in the intermittent renewable energy supply systems. CAES has special requirements for compressor(e.g. heavy load, high pressure ratio, wide range).... Compressed Air Energy Storage(CAES) has tremendous promotional value in the intermittent renewable energy supply systems. CAES has special requirements for compressor(e.g. heavy load, high pressure ratio, wide range). With advantages of higher efficiency and wider operation range, IGC(Integrally Geared Compressors) is selected to fulfill the special requirements of the large-scale CAES. To get a better aerodynamic performance, in this paper, based on the analysis of internal flow of centrifugal compressor, a multi-objective one-dimensional optimization design program was put forward combined with modified Two-Zone model and a low solidity vaned diffuser(LSVD) design method. Then, a centrifugal compressor aerodynamic component optimization design system was established with the three-dimensional blade optimization design method based on neural network and genetic optimization algorithm. Then a validation was done by redesigning the Krain-Impeller to get better performance. Finally, the aerodynamic design of the first stage of IGC was completed. The CFD calculation results indicated that the total-to-total pressure ratio of the first stage was 2.51 and the polytropic efficiency was 91.0% at the design point. What’s more, an operation margin and surge margin of the compressor was about 26.5% and 16.4% respectively. 展开更多
关键词 compressed air energy storage(caes) centrifugal compressor aerodynamic DESIGN LOW SOLIDITY vaned diffuser(LSVD) Two-Zone model blade DESIGN
原文传递
上一页 1 2 27 下一页 到第
使用帮助 返回顶部