Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp...Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods.展开更多
Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a ...Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications.展开更多
The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid reg...The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.展开更多
The paper described a newly developed high performance compressed air foam system(CAFS). The effective system generates uniform foam w ith greater momentum by injecting compressed air into flowing foam solution. Foa ...The paper described a newly developed high performance compressed air foam system(CAFS). The effective system generates uniform foam w ith greater momentum by injecting compressed air into flowing foam solution. Foa m generated by this system presented superior viscous and wetting properties to water.A pendulum system was designed to measure yield stress of foam. The results pro ved the existence of yield stress of foam. And the increasing tendency of yield stress with gas fraction and bubble size has also been found out.展开更多
To analyze the working characteristics of complex compressed air networks, numerical methods are widely used which are based on finite element technology or intelligent algorithms. However, the effectiveness of the nu...To analyze the working characteristics of complex compressed air networks, numerical methods are widely used which are based on finite element technology or intelligent algorithms. However, the effectiveness of the numerical methods is limited. In this paper, to provide a new method to optimize the design and the air supply strategy of the complex compressed air pipe network, firstly, a novel method to analyze the topology structure of the compressed air flow in the pipe network is initially proposed. A matrix is used to describe the topology structure of the compressed air flow. Moreover, based on the analysis of the pressure loss of the pipe network, the relationship between the pressure and the flow of the compressed air is derived, and a prediction method of pressure fluctuation and air flow in a segment in a complex pipe network is proposed. Finally, to inspect the effectiveness of the method, an experiment with a complex network is designed. The pressure and the flow of airflow in the network are measured and studied. The results of the study show that, the predicted results with the proposed method have a good consistency with the experimental results, and that verifies the air flow prediction method of the complex pipe network. This research proposes a new method to analyze the compressed air network and a prediction method of pressure fluctuation and air flow in a segment, which can predicate the fluctuation of the pressure according to the flow of compressed air, and predicate the fluctuation of the flow according to the pressure in a segment of a complex pipe network.展开更多
During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and proper...During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and properly evaluate air tightness of polymer sealing caverns,the air-pressure-related air density and permeability must be considered.In this context,the high-pressure air penetration in the polymer sealing layer is studied in consideration of thermodynamic change of the cavern structure during the system operation.The air tightness model of compressed air storage energy caverns is then established.In the model,the permeability coefficient and air density of sealing layer vary with air pressure,and the effectiveness of the model is verified by field data in two test caverns.Finally,a compressed air storage energy cavern is taken as an example to understand the air tightness.The air leakage rate in the caverns is larger than that using air-pressure-independent permeability coefficient and air density,which is constant and small in the previous leakage rate calculation.Under the operating pressure of 4.5-10 MPa,the daily air leakage in the compressed air storage energy cavern of Yungang Mine with high polymer butyl rubber as the sealing material is 0.62%,which can meet the sealing requirements of compressed air storage energy caverns.The air tightness of the polymer sealing cavern is mainly affected by the cavern operating pressure,injected air temperature,cavern radius,and sealing layer thickness.The cavern air leakage rate will be decreased to reduce the cavern operating pressure the injection air temperature,or the cavern radius and sealing layer thickness will be increased.展开更多
Compressed air energy storage (CAES) systems represent a new technology for storing very large amount of energy. A peculiarity of the systems is that gas must be stored under a high pressure (p - 10-30 MPa). A lin...Compressed air energy storage (CAES) systems represent a new technology for storing very large amount of energy. A peculiarity of the systems is that gas must be stored under a high pressure (p - 10-30 MPa). A lined rock cavern (LRC) in the form of a tunnel or shaft can be used within this pressure range. The rock mass surrounding the opening resists the internal pressure and the lining ensures gas tightness. The present paper investigates the key aspects of technical feasibility of shallow LRC tunnels or shafts under a wide range of geotechnical conditions. Results show that the safety with respect to uplift failure of the rock mass is a necessary but not a sufficient condition for assessing feasibility. The deformation of the rock mass should also be kept sufficiently small to preserve the integrity of the lining and, especially, its tightness. If the rock is not sufficiently stiff, buckling or fatigue failure of the steel lining becomes more decisive when evaluating the feasible operating air pressure. The design of the concrete plug that seals the compressed air stored in the container is another demanding task. Numerical analyses indicate that in most cases, the stability of the rock mass under the plug loading is not a decisive factor for plug design.展开更多
The current research of compressed air engine(CAE) mainly focused on simulations and system integrations. However, energy efficiency and output torque of the CAE is limited, which restricts its application and popul...The current research of compressed air engine(CAE) mainly focused on simulations and system integrations. However, energy efficiency and output torque of the CAE is limited, which restricts its application and popularization. In this paper, the working principles of CAE are briefly introduced. To set a foundation for the study on the optimization of the CAE, the basic mathematical model of working processes is set up. A pressure-compensated valve which can reduce the inertia force of the valve is proposed. To verify the mathematical model, the prototype with the newly designed pressure-compensated intake valve is built and the experiment is carried out, simulation and experimental results of the CAE are conducted, and pressures inside the cylinder and output torque of the CAE are obtained. Orthogonal design and grey relation analysis are utilized to optimize structural parameters. The experimental and optimized results show that, first of all, pressure inside the cylinder has the same changing tendency in both simulation curve and experimental curve. Secondly, the highest average output torque is obtained at the highest intake pressure and the lowest rotate speed. Thirdly, the optimization of the single-cylinder CAE can improve the working efficiency from an original 21.95% to 50.1%, an overall increase of 28.15%, and the average output torque increases also increases from 22.047 5 N · m to 22.439 N · m. This research designs a single-cylinder CAE with pressure-compensated intake valve, and proposes a structural parameters design method which improves the single-cylinder CAE performance.展开更多
Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compres...Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compressed air expanses pushing water to drive the hydro turbine for power generation. The novel storage equipment saves natural gas resources, reduces carbon emission, and improves the controllability and reliability. The principle of compressed air pumped hydro energy storage is introduced and its mathematical model is built. The storage and generation process of the novel equipment is analyzed using the model. The calculation formula of the storage power is deduced in theory in different situations of isothermal and adiabatic compression. The optimal storage scheme is given when the capacity and withstand pressure of the vessel is definitive, and the max available capacity and the equipment utilization efficiency evaluation of the scheme is given.展开更多
Compressed air has been generally used since the beginning of the 20 th century for various applications. However, rupture of the colon caused by compressed air is uncommon. We report a case of pneumatic rupture of th...Compressed air has been generally used since the beginning of the 20 th century for various applications. However, rupture of the colon caused by compressed air is uncommon. We report a case of pneumatic rupture of the sigmoid colon. The patient was admitted to the emergency room complaining of abdominal pain and distention. His colleague triggered a compressed air nozzle against his anus as a practical joke 2 h previously. On arrival, his pulse rate was 126 beats/min, respiratory rate was 42 breaths/min and blood pressure was 86/54 mm Hg. Physical examination revealed peritoneal irritation and the abdomen was markedly distended. Computed tomography of the abdomen showed a large volume of air in the abdominal cavity. Peritoneocentesis was performed to relieve the tension pneumoperitoneum. Emergency laparotomy was done after controlling shock. Laparotomy revealed a 2-cm perforation in the sigmoid colon. The perforation was sutured and temporary ileostomy was performed as well as thorough drainage and irrigation of the abdominopelvic cavity. Reversal of ileostomy was performed successfully after 3 mo. Follow-up was uneventful. We also present a brief literature review.展开更多
<div style="text-align:justify;"> With the wide application of renewable energy, energy storage technology has become a research hotspot. In order to overcome the shortcomings of energy loss caused by ...<div style="text-align:justify;"> With the wide application of renewable energy, energy storage technology has become a research hotspot. In order to overcome the shortcomings of energy loss caused by compression heating in compressed air energy storage technology, a novel constant-pressure pumped hydro combined with compressed air energy storage system was proposed. To deepen the understanding of the system and make the analysis closer to reality, this paper adopted an off-design model of the compressor to calculate and analyze the effect of key parameters on system thermodynamics performance. In addition, the results of this paper were compared with previous research results, and it was found that the current efficiency considering the off-design model of compressor was generally 2% - 5% higher than the previous efficiency. With increased preset pressure or with decreased terminal pressure, both the previous efficiency and current efficiency of the system increased. The exergy destruction coefficient of the throttle valve reached 4%. System efficiency was more sensitive to changes in water pump efficiency and hydroturbine efficiency. </div>展开更多
Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using...Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and charac-teristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.展开更多
With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy ...With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy storage (OCAES) is a novel flexible-scale energy storage technology that is suitable for marine renewable energy storage in coastal cities, islands, offshore platforms, and offshore renewable energy farms. For deep-water applications, a marine riser is necessary for connecting floating platforms and subsea systems. Thus, the response characteristics of marine risers are of great importance for the stability and safety of the entire OCAES system. In this study, numerical models of two kinds of flexible risers, namely, catenary riser and lazy wave riser, are established in OrcaFlex software. The static and dynamic characteristics of the catenary and the lazy wave risers are analyzed under different environment conditions and internal pressure levels. A sensitivity analysis of the main parameters affecting the lazy wave riser is also conducted. Results show that the structure of the lazy wave riser is more complex than the catenary riser;nevertheless, the former presents better response performance.展开更多
The appreciable economic growth in some of the developing countries like India in the recent years, towards providing energy security causes large environmental impact. Renewable Energy (RE) is being seen as one of ...The appreciable economic growth in some of the developing countries like India in the recent years, towards providing energy security causes large environmental impact. Renewable Energy (RE) is being seen as one of the important means to meet the growing power needs of the economy while enhancing energy security and providing opportunities for mitigating greenhouse gas emissions. However, RE sources are highly intermittent in nature. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. Hence at this juncture, it is necessary to explore the benefits of suitable Energy storage technologies. Compressed air energy storage (CAES) is a commercial, utility-scale technology that provides long-duration energy storage with fast ramp rates and good part-load operation. It is a promising storage technology for balancing the large-scale penetration of renewable energies, such as wind and solar power, into electric grids. Considering the potential of CAES storage, the present work, a thermodynamic model is developed with suitable assumptions and the simulation analysis is performed using transient system simulation (TRNSYS) v17 software. The system performanee is compared by considering the recovery during the heat of compression using a thermal storage system and without considering the heat recovery. The overall turnaround efficiency of the system without considering the thermal energy storage (TES) system is 57 % and with TES system the efficiency is increased to 70%.展开更多
In recent years, wind power generation and photovoltaic power generation have been developing rapidly, and the installed capacity of the new resources generation has been keeping a fast growth every year. But with the...In recent years, wind power generation and photovoltaic power generation have been developing rapidly, and the installed capacity of the new resources generation has been keeping a fast growth every year. But with the incorporation into the grid, the new resources generation that has the properties such as randomness and volatility causes certain risks to the power grid, which results in the falling of the incorporation proportion instead of rising. This paper describes the current status and development problems of the new energy in China, and gives a brief introduction of characteristics of various energy storage technologies. This paper focuses on the analysis of the compressed air energy storage technology in recent years and new developments and the latest technology at home and abroad, additionally, the paper introduces a new concept of the compressed air energy storage system.展开更多
Nowadays, automobiles consume a large number of fossil fuels. However, the consumption of fossil fuels has brought many serious environmental problems, such as global warming, ozone layer depletion and fine particulat...Nowadays, automobiles consume a large number of fossil fuels. However, the consumption of fossil fuels has brought many serious environmental problems, such as global warming, ozone layer depletion and fine particulate matter. To avoid such environmental problems, renewable energy has been applied to automobiles. In this paper, an air-powered engine of a renewable energy vehicle is introduced. To lay a foundation for the optimization of compressed air engine (CAE), a physical model of compressed air engine (CAE) is established with cam which controls compressed air charge or discharge cylinder. To obtain performance of the CAE, a prototype CAE system is set up. The output torque, power and efficiency are obtained through experimental study. The results show that the prototype of CAE has a good economic performance under low speed and when the supply pressure is 2 MPa, the maximum output power is 1.92 kW;the maximum output torque is 56.55 N·m;and the maximum efficiency is 25%. This research can be referred to in the optimization of air-powered engine.展开更多
Different experiments in high speed turbomachines require expensive and sophisticated infrastructure to implement their impulsion and reach high regimes. In developed countries, this can be achieved by using aeroderiv...Different experiments in high speed turbomachines require expensive and sophisticated infrastructure to implement their impulsion and reach high regimes. In developed countries, this can be achieved by using aeroderivative gas turbines or DC motors of about 400 HP. This paper presents an experimental system designed and built with the intention of performing behavior studies in test turbomachinery. The proposed installation uses compressed air as driving fluid, which allows the turbomachinery to reach high rotational speeds where very important phenomena occur. An analysis is carried out considering the rotational speed behavior of an internal combustion engine turbocharger of the Perkins series when it is driven by pressures ranging from 4.2 kg/cm2 to zero. Additionally, another experiment couples an automotive electrical generator with the turbine to observe the system operation when a load is applied. The behavior of the pressure is analyzed when it is in function of the time of air discharge that goes from a compressed air storage tank to the turbocharger for its impulsion. This is an experimental system that can be designed and constructed economically within the bounds of any public university.展开更多
Supercharging is the process of supplying air for combustion at a pressure greater than that achieved by natural or atmospheric induction, as applied to internal combustion engines. As a consequence of demonstrated te...Supercharging is the process of supplying air for combustion at a pressure greater than that achieved by natural or atmospheric induction, as applied to internal combustion engines. As a consequence of demonstrated technological, economical and energetic advantages in multiple literature evaluations concerning the large scale wind-compressed air hybrid storage system with gas turbines, the utilization of a hybrid wind-diesel system with compressed air storage (HWDCAS) has been frequently explored. These will mainly have average or small scale application such as the powering of isolated sites. It has been proven in numerous studies that the HWDCAS combined with an additional supercharging of the diesel engines will contribute to the increase of the power and efficiency of the diesel engine, the reduction of both fuel consumption and the emission of greenhouse gases (GHG). This article presents the obtained results from experimental validation of the selected design with an aim to valorize this innovative solution and become trustworthy.展开更多
Based on lab model experiments and through the limit analysis, the theoretical formula of calculation coal breaking pressure with compressed air was derived. The experimental result shows that blasting pressure must e...Based on lab model experiments and through the limit analysis, the theoretical formula of calculation coal breaking pressure with compressed air was derived. The experimental result shows that blasting pressure must exceed 84.0MPa to break coal with compressive strength of 13.2MPa. The research provides an important theoretical basis for the design of airshooting mining and industrial tests.展开更多
Compressed air is an integral utility part of industrial utility systems. Any improvement in compressed air system will lead to reduction in utility cost. The effectiveness of utilization side of compressed air is usu...Compressed air is an integral utility part of industrial utility systems. Any improvement in compressed air system will lead to reduction in utility cost. The effectiveness of utilization side of compressed air is usually dependent upon operator’s discretion. There are no performance testing methods available for testing existing end use equipments. A test apparatus for estimation of compressed air flow based on measurement of pressure reduction in a fixed volume cylinder in a given time is developed. The test apparatus is easy to build and simple to operate in an industrial environment. This can be used for measuring performance of any pneumatic end-use equipment and for benchmarking the performance. The test apparatus was used in a foundry for quantifying the performance of the old and new blow guns.展开更多
基金the financial support from the Natural Science Foundation of China (Nos.52179118,52209151 and 42307238)the Science and Technology Project of Jiangsu Provincial Department of Science and Technology-Carbon Emissions Peak and Carbon Neutrality Science and Technology Innovation Specia Fund Project (No.BK20220025)+3 种基金the Excellent Postdoctoral Program of Jiangsu Province (No.2023ZB602)the China Postdoctora Science Foundation (Nos.2023M733773 and 2023M733772)Xuzhou City Science and Technology Innovation Special Basic Research Plan (KC23045)State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,China University of Mining&Technology (No SKLGDUEK1916)。
文摘Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods.
基金supported by the National Natural Science Foundation of China(No.42272321)Hubei Provincial Key Research Projects(Nos.2022BAA093 and 2022BAD163)+1 种基金Major Scientific and Technological Special Project of Jiangxi Province(No.2023ACG01004)WSGRI Engineering&Surveying Incorporation Limited(No.6120230256)。
文摘Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications.
基金supported by National Natural Science Foundation of China(Project No.52077079).
文摘The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.
文摘The paper described a newly developed high performance compressed air foam system(CAFS). The effective system generates uniform foam w ith greater momentum by injecting compressed air into flowing foam solution. Foa m generated by this system presented superior viscous and wetting properties to water.A pendulum system was designed to measure yield stress of foam. The results pro ved the existence of yield stress of foam. And the increasing tendency of yield stress with gas fraction and bubble size has also been found out.
基金Supported by National Natural Science Foundation of China(Grant No.51205008)
文摘To analyze the working characteristics of complex compressed air networks, numerical methods are widely used which are based on finite element technology or intelligent algorithms. However, the effectiveness of the numerical methods is limited. In this paper, to provide a new method to optimize the design and the air supply strategy of the complex compressed air pipe network, firstly, a novel method to analyze the topology structure of the compressed air flow in the pipe network is initially proposed. A matrix is used to describe the topology structure of the compressed air flow. Moreover, based on the analysis of the pressure loss of the pipe network, the relationship between the pressure and the flow of the compressed air is derived, and a prediction method of pressure fluctuation and air flow in a segment in a complex pipe network is proposed. Finally, to inspect the effectiveness of the method, an experiment with a complex network is designed. The pressure and the flow of airflow in the network are measured and studied. The results of the study show that, the predicted results with the proposed method have a good consistency with the experimental results, and that verifies the air flow prediction method of the complex pipe network. This research proposes a new method to analyze the compressed air network and a prediction method of pressure fluctuation and air flow in a segment, which can predicate the fluctuation of the pressure according to the flow of compressed air, and predicate the fluctuation of the flow according to the pressure in a segment of a complex pipe network.
基金We acknowledge the funding support from the National Science Foundation of China(Grant No.52278402)the Young Scientist Project of the National Key Research and Development Program of China(Grant No.2021YFC2900600)the Fundamental Research Funds for the Central Universities of China(Grant No.22120220117).
文摘During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and properly evaluate air tightness of polymer sealing caverns,the air-pressure-related air density and permeability must be considered.In this context,the high-pressure air penetration in the polymer sealing layer is studied in consideration of thermodynamic change of the cavern structure during the system operation.The air tightness model of compressed air storage energy caverns is then established.In the model,the permeability coefficient and air density of sealing layer vary with air pressure,and the effectiveness of the model is verified by field data in two test caverns.Finally,a compressed air storage energy cavern is taken as an example to understand the air tightness.The air leakage rate in the caverns is larger than that using air-pressure-independent permeability coefficient and air density,which is constant and small in the previous leakage rate calculation.Under the operating pressure of 4.5-10 MPa,the daily air leakage in the compressed air storage energy cavern of Yungang Mine with high polymer butyl rubber as the sealing material is 0.62%,which can meet the sealing requirements of compressed air storage energy caverns.The air tightness of the polymer sealing cavern is mainly affected by the cavern operating pressure,injected air temperature,cavern radius,and sealing layer thickness.The cavern air leakage rate will be decreased to reduce the cavern operating pressure the injection air temperature,or the cavern radius and sealing layer thickness will be increased.
文摘Compressed air energy storage (CAES) systems represent a new technology for storing very large amount of energy. A peculiarity of the systems is that gas must be stored under a high pressure (p - 10-30 MPa). A lined rock cavern (LRC) in the form of a tunnel or shaft can be used within this pressure range. The rock mass surrounding the opening resists the internal pressure and the lining ensures gas tightness. The present paper investigates the key aspects of technical feasibility of shallow LRC tunnels or shafts under a wide range of geotechnical conditions. Results show that the safety with respect to uplift failure of the rock mass is a necessary but not a sufficient condition for assessing feasibility. The deformation of the rock mass should also be kept sufficiently small to preserve the integrity of the lining and, especially, its tightness. If the rock is not sufficiently stiff, buckling or fatigue failure of the steel lining becomes more decisive when evaluating the feasible operating air pressure. The design of the concrete plug that seals the compressed air stored in the container is another demanding task. Numerical analyses indicate that in most cases, the stability of the rock mass under the plug loading is not a decisive factor for plug design.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375028,51205008)
文摘The current research of compressed air engine(CAE) mainly focused on simulations and system integrations. However, energy efficiency and output torque of the CAE is limited, which restricts its application and popularization. In this paper, the working principles of CAE are briefly introduced. To set a foundation for the study on the optimization of the CAE, the basic mathematical model of working processes is set up. A pressure-compensated valve which can reduce the inertia force of the valve is proposed. To verify the mathematical model, the prototype with the newly designed pressure-compensated intake valve is built and the experiment is carried out, simulation and experimental results of the CAE are conducted, and pressures inside the cylinder and output torque of the CAE are obtained. Orthogonal design and grey relation analysis are utilized to optimize structural parameters. The experimental and optimized results show that, first of all, pressure inside the cylinder has the same changing tendency in both simulation curve and experimental curve. Secondly, the highest average output torque is obtained at the highest intake pressure and the lowest rotate speed. Thirdly, the optimization of the single-cylinder CAE can improve the working efficiency from an original 21.95% to 50.1%, an overall increase of 28.15%, and the average output torque increases also increases from 22.047 5 N · m to 22.439 N · m. This research designs a single-cylinder CAE with pressure-compensated intake valve, and proposes a structural parameters design method which improves the single-cylinder CAE performance.
文摘Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compressed air expanses pushing water to drive the hydro turbine for power generation. The novel storage equipment saves natural gas resources, reduces carbon emission, and improves the controllability and reliability. The principle of compressed air pumped hydro energy storage is introduced and its mathematical model is built. The storage and generation process of the novel equipment is analyzed using the model. The calculation formula of the storage power is deduced in theory in different situations of isothermal and adiabatic compression. The optimal storage scheme is given when the capacity and withstand pressure of the vessel is definitive, and the max available capacity and the equipment utilization efficiency evaluation of the scheme is given.
文摘Compressed air has been generally used since the beginning of the 20 th century for various applications. However, rupture of the colon caused by compressed air is uncommon. We report a case of pneumatic rupture of the sigmoid colon. The patient was admitted to the emergency room complaining of abdominal pain and distention. His colleague triggered a compressed air nozzle against his anus as a practical joke 2 h previously. On arrival, his pulse rate was 126 beats/min, respiratory rate was 42 breaths/min and blood pressure was 86/54 mm Hg. Physical examination revealed peritoneal irritation and the abdomen was markedly distended. Computed tomography of the abdomen showed a large volume of air in the abdominal cavity. Peritoneocentesis was performed to relieve the tension pneumoperitoneum. Emergency laparotomy was done after controlling shock. Laparotomy revealed a 2-cm perforation in the sigmoid colon. The perforation was sutured and temporary ileostomy was performed as well as thorough drainage and irrigation of the abdominopelvic cavity. Reversal of ileostomy was performed successfully after 3 mo. Follow-up was uneventful. We also present a brief literature review.
文摘<div style="text-align:justify;"> With the wide application of renewable energy, energy storage technology has become a research hotspot. In order to overcome the shortcomings of energy loss caused by compression heating in compressed air energy storage technology, a novel constant-pressure pumped hydro combined with compressed air energy storage system was proposed. To deepen the understanding of the system and make the analysis closer to reality, this paper adopted an off-design model of the compressor to calculate and analyze the effect of key parameters on system thermodynamics performance. In addition, the results of this paper were compared with previous research results, and it was found that the current efficiency considering the off-design model of compressor was generally 2% - 5% higher than the previous efficiency. With increased preset pressure or with decreased terminal pressure, both the previous efficiency and current efficiency of the system increased. The exergy destruction coefficient of the throttle valve reached 4%. System efficiency was more sensitive to changes in water pump efficiency and hydroturbine efficiency. </div>
文摘Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and charac-teristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.
基金supported by the Fundamental Research Funds for the Central Universities of China(grant numbers 3132016353,3132019117,3132019122)the Natural Sciences and Engineering Research Council of Canada
文摘With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy storage (OCAES) is a novel flexible-scale energy storage technology that is suitable for marine renewable energy storage in coastal cities, islands, offshore platforms, and offshore renewable energy farms. For deep-water applications, a marine riser is necessary for connecting floating platforms and subsea systems. Thus, the response characteristics of marine risers are of great importance for the stability and safety of the entire OCAES system. In this study, numerical models of two kinds of flexible risers, namely, catenary riser and lazy wave riser, are established in OrcaFlex software. The static and dynamic characteristics of the catenary and the lazy wave risers are analyzed under different environment conditions and internal pressure levels. A sensitivity analysis of the main parameters affecting the lazy wave riser is also conducted. Results show that the structure of the lazy wave riser is more complex than the catenary riser;nevertheless, the former presents better response performance.
文摘The appreciable economic growth in some of the developing countries like India in the recent years, towards providing energy security causes large environmental impact. Renewable Energy (RE) is being seen as one of the important means to meet the growing power needs of the economy while enhancing energy security and providing opportunities for mitigating greenhouse gas emissions. However, RE sources are highly intermittent in nature. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. Hence at this juncture, it is necessary to explore the benefits of suitable Energy storage technologies. Compressed air energy storage (CAES) is a commercial, utility-scale technology that provides long-duration energy storage with fast ramp rates and good part-load operation. It is a promising storage technology for balancing the large-scale penetration of renewable energies, such as wind and solar power, into electric grids. Considering the potential of CAES storage, the present work, a thermodynamic model is developed with suitable assumptions and the simulation analysis is performed using transient system simulation (TRNSYS) v17 software. The system performanee is compared by considering the recovery during the heat of compression using a thermal storage system and without considering the heat recovery. The overall turnaround efficiency of the system without considering the thermal energy storage (TES) system is 57 % and with TES system the efficiency is increased to 70%.
文摘In recent years, wind power generation and photovoltaic power generation have been developing rapidly, and the installed capacity of the new resources generation has been keeping a fast growth every year. But with the incorporation into the grid, the new resources generation that has the properties such as randomness and volatility causes certain risks to the power grid, which results in the falling of the incorporation proportion instead of rising. This paper describes the current status and development problems of the new energy in China, and gives a brief introduction of characteristics of various energy storage technologies. This paper focuses on the analysis of the compressed air energy storage technology in recent years and new developments and the latest technology at home and abroad, additionally, the paper introduces a new concept of the compressed air energy storage system.
文摘Nowadays, automobiles consume a large number of fossil fuels. However, the consumption of fossil fuels has brought many serious environmental problems, such as global warming, ozone layer depletion and fine particulate matter. To avoid such environmental problems, renewable energy has been applied to automobiles. In this paper, an air-powered engine of a renewable energy vehicle is introduced. To lay a foundation for the optimization of compressed air engine (CAE), a physical model of compressed air engine (CAE) is established with cam which controls compressed air charge or discharge cylinder. To obtain performance of the CAE, a prototype CAE system is set up. The output torque, power and efficiency are obtained through experimental study. The results show that the prototype of CAE has a good economic performance under low speed and when the supply pressure is 2 MPa, the maximum output power is 1.92 kW;the maximum output torque is 56.55 N·m;and the maximum efficiency is 25%. This research can be referred to in the optimization of air-powered engine.
文摘Different experiments in high speed turbomachines require expensive and sophisticated infrastructure to implement their impulsion and reach high regimes. In developed countries, this can be achieved by using aeroderivative gas turbines or DC motors of about 400 HP. This paper presents an experimental system designed and built with the intention of performing behavior studies in test turbomachinery. The proposed installation uses compressed air as driving fluid, which allows the turbomachinery to reach high rotational speeds where very important phenomena occur. An analysis is carried out considering the rotational speed behavior of an internal combustion engine turbocharger of the Perkins series when it is driven by pressures ranging from 4.2 kg/cm2 to zero. Additionally, another experiment couples an automotive electrical generator with the turbine to observe the system operation when a load is applied. The behavior of the pressure is analyzed when it is in function of the time of air discharge that goes from a compressed air storage tank to the turbocharger for its impulsion. This is an experimental system that can be designed and constructed economically within the bounds of any public university.
文摘Supercharging is the process of supplying air for combustion at a pressure greater than that achieved by natural or atmospheric induction, as applied to internal combustion engines. As a consequence of demonstrated technological, economical and energetic advantages in multiple literature evaluations concerning the large scale wind-compressed air hybrid storage system with gas turbines, the utilization of a hybrid wind-diesel system with compressed air storage (HWDCAS) has been frequently explored. These will mainly have average or small scale application such as the powering of isolated sites. It has been proven in numerous studies that the HWDCAS combined with an additional supercharging of the diesel engines will contribute to the increase of the power and efficiency of the diesel engine, the reduction of both fuel consumption and the emission of greenhouse gases (GHG). This article presents the obtained results from experimental validation of the selected design with an aim to valorize this innovative solution and become trustworthy.
文摘Based on lab model experiments and through the limit analysis, the theoretical formula of calculation coal breaking pressure with compressed air was derived. The experimental result shows that blasting pressure must exceed 84.0MPa to break coal with compressive strength of 13.2MPa. The research provides an important theoretical basis for the design of airshooting mining and industrial tests.
文摘Compressed air is an integral utility part of industrial utility systems. Any improvement in compressed air system will lead to reduction in utility cost. The effectiveness of utilization side of compressed air is usually dependent upon operator’s discretion. There are no performance testing methods available for testing existing end use equipments. A test apparatus for estimation of compressed air flow based on measurement of pressure reduction in a fixed volume cylinder in a given time is developed. The test apparatus is easy to build and simple to operate in an industrial environment. This can be used for measuring performance of any pneumatic end-use equipment and for benchmarking the performance. The test apparatus was used in a foundry for quantifying the performance of the old and new blow guns.