The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitivel...The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitively estimate the dynamic ModeⅡfracture toughness KⅡCof rocks under a triaxial stress state.However,the method for determining the dynamic KⅡCof rocks under a triaxial stress has not been developed yet.With an optimal sample preparation,the short core in compression(SCC)method was designed and verified in this study to measure the dynamic KⅡCof Fangshan marble(FM)subjected to different hydrostatic pressures through a triaxial dynamic testing system.The formula for calculating the dynamic KⅡCof the rock SCC specimen under hydrostatic pressures was obtained by using the finite element method in combination with secondary cracks.The experimental results indicate that the failure mode of the rock SCC specimen under a hydrostatic pressure is the shear fracture and the KⅡCof FM increases as the loading rate.In addition,at a given loading rate the dynamic rock KⅡCis barely affected by hydrostatic pressures.Another important observation is that the dynamic fracture energy of FM enhances with loading rates and hydrostatic pressures.展开更多
The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper.The system consists of a one-stage-core driven fan stage(CDFS),an inne...The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper.The system consists of a one-stage-core driven fan stage(CDFS),an inner bypass duct and a five-stage high pressure compressor(HPC),providing two basic operating modes: the single bypass mode and the double bypass mode.Variable vanes are necessary to realize the mode switch of the system.The correct matching in the double bypass mode requires a proper combination of the mass flow,total pressure ratio and blade speed.The work capacity of the system decreases in the double bypass mode and the pressure ratio tends to decrease more for the CDFS and the front stages of the HPC.The overall system efficiency is higher in the double bypass mode.The radial distributions of aerodynamic parameters are similar in different modes.The notable redistribution of mass flow downstream the CDFS in the single bypass mode leads to strong radial flows and additional mixing losses.The absolute flow angles into the inner bypass increase for the inner span and decrease for the outer span when the system is switched from the single bypass mode to the double bypass mode.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)(No.72031326)the National Natural Science Foundation of China(No.52079091)+2 种基金supported by Academy of Finland under Grant No.322518supported by the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)The opening project number is KFJJ20-01M。
文摘The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitively estimate the dynamic ModeⅡfracture toughness KⅡCof rocks under a triaxial stress state.However,the method for determining the dynamic KⅡCof rocks under a triaxial stress has not been developed yet.With an optimal sample preparation,the short core in compression(SCC)method was designed and verified in this study to measure the dynamic KⅡCof Fangshan marble(FM)subjected to different hydrostatic pressures through a triaxial dynamic testing system.The formula for calculating the dynamic KⅡCof the rock SCC specimen under hydrostatic pressures was obtained by using the finite element method in combination with secondary cracks.The experimental results indicate that the failure mode of the rock SCC specimen under a hydrostatic pressure is the shear fracture and the KⅡCof FM increases as the loading rate.In addition,at a given loading rate the dynamic rock KⅡCis barely affected by hydrostatic pressures.Another important observation is that the dynamic fracture energy of FM enhances with loading rates and hydrostatic pressures.
文摘The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper.The system consists of a one-stage-core driven fan stage(CDFS),an inner bypass duct and a five-stage high pressure compressor(HPC),providing two basic operating modes: the single bypass mode and the double bypass mode.Variable vanes are necessary to realize the mode switch of the system.The correct matching in the double bypass mode requires a proper combination of the mass flow,total pressure ratio and blade speed.The work capacity of the system decreases in the double bypass mode and the pressure ratio tends to decrease more for the CDFS and the front stages of the HPC.The overall system efficiency is higher in the double bypass mode.The radial distributions of aerodynamic parameters are similar in different modes.The notable redistribution of mass flow downstream the CDFS in the single bypass mode leads to strong radial flows and additional mixing losses.The absolute flow angles into the inner bypass increase for the inner span and decrease for the outer span when the system is switched from the single bypass mode to the double bypass mode.