期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamics along the epithelial-cancer biointerface:Hidden system complexities
1
作者 IVANA PAJIC-LIJAKOVIC MILAN MILIVOJEVIC 《BIOCELL》 SCIE 2023年第11期2321-2334,共14页
The biointerface dynamics influence any cancer spreading through the epithelium since it is documented in the early stages some malignancies(like epithelial cancer).The altered rearrangement of epithelial cells has an... The biointerface dynamics influence any cancer spreading through the epithelium since it is documented in the early stages some malignancies(like epithelial cancer).The altered rearrangement of epithelial cells has an impact on the development of cancer.Therefore,it is necessary to comprehend the underlying biological and physical mechanisms of this biointerface dynamics for early suppression of cancer.While the biological mechanisms include cell signaling and gene expression,the physical mechanisms are several physical parameters such as the epithelial-cancer interfacial tension,epithelial surface tension,and compressive stress accumulated within the epithelium.Although the segregation of epithelia-cancer co-cultured systems was widely investigated,the role of these physical parameters in cell reorganization is still not fully recognized.Hence,this review is focused on clarifying the role that some physical parameters have during cell reorganization within the epithelial cell clusters and cancer spread within co-cultured spheroids.We have applied the developed biophysical model to point out the inter-relations among physical parameters that influence cell reorganization within epithelial-cancer co-cultured systems.The main results of this theoretical consideration have been assessed by integrating the biophysical model with biological and bio-mechanical experiments from the available literature.The epithelial-cancer interfacial tension leads to the reduction of the biointerface area,which leads to an increase in the compressive residual stress within the epithelial clusters depending on the viscoelasticity of the epithelial subpopulation.This stress impacts epithelial rearrangement and the dynamics along the biointerface by influencing the epithelial surface tension and epithelial-cancer interfacial tension.Further,the interrelation between the epithelial surface tension and epithelial-cancer interfacial tension influences the spread of cancer cells. 展开更多
关键词 Collective cell migration cell compressive residual stress Viscoelasticity Epithelial surface tension Epithelial-cancer interfacial tension Supracellular actin network
下载PDF
Study of Sandy Soil Compaction
2
作者 Andrea Formato Gian Pio Pucillo Antonio Abagnale 《Journal of Agricultural Science and Technology(A)》 2013年第5期356-367,共12页
In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investi... In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investigations were performed to compare hydrostatic compression test (HCT) responses and evaluate the compression index, Cc, which is an indicator of the soil's susceptibility to compaction-induced damage. The experiments have been performed on 24 soil samples typologies. Each sample has been obtained by combining three types of soil granulometry (types A, B and C) with a relative content varying from 0% to 100% in 20% increments. Soil type A had a granulometry ranging between 0.5 mm and 1 mm, type B between 0.25 mm and 0.5 mm, and type C less than 0.25 mm. These samples were representative of a sandy soil, chemically inactive and had various granulometries and initial moisture contents. A cell for HCT has been set up to allow the initial volume measurement of the test pieces and the subsequent changes during HCT with an estimated error less than 0.1 cm3. All samples were pre-compacted and prepared in agreement with the actual standards. The experimental data are reported in diagrams, the data allowed comparison of the mechanical behaviors between the considered unsaturated soils and underlined how soil moisture and granulometry affect soil response during HCT. Furthermore, because of the methodology used, the equipment was very economical. 展开更多
关键词 Compression test cell hydrostatic soil compression soil mechanics unsaturated soils sandy soil compaction.
下载PDF
Relationship between single and bulk mechanical properties for zeolite ZSM5 spray-dried particles 被引量:2
3
作者 M.Marigo D.L.Cairns +2 位作者 J.Bowen A.Ingram E.H.Stitt 《Particuology》 SCIE EI CAS CSCD 2014年第3期130-138,共9页
In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single partic... In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single particle mechanical properties. Particle shape and size distribution of the powders, determined by laser diffraction and scanning electron microscopy (SEM), confirmed the spherical shape of the spray-dried particles. The excellent flowability of the material was assessed by typical methods such as the Hausner ratio and the Cart index, This was confirmed by bulk measurements of the particle-particle internal friction parameter and flow function using a Schulze shear cell, which also illustrated the low compressibility of the material. Single particle compression was used to characterize single particle mechanical properties such as reduced elastic modulus and strength from Hertz contact mechanics theory. Comparison with surface properties obtained from nanoindentation suggests heterogeneity, the surface being harder than the core. In order to evaluate the relationship between single particle mechanical properties and bulk compression behaviour, uniaxial confined compression was carried out. It was determined that the Adams model was suitable for describing the bulk compression and furthermore that the Adams model parameter, apparent strength of single particles, was in good agreement with the single particle strength determined from single particle compression test. 展开更多
关键词 Zeolite particle Flowability Powder flow function Effective angle of internal friction Schulze shear cell Nanoindentation Single particle compression Bulk compression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部