The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were prefor...The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were preformed in the temperature range of 653-773 K and in the strain rate range of 0.001-10 s-1 up to a true plastic strain of 0.7. The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature,and decreases with increasing temperature at a given imposed strain rate. The relationship between the flow stress and the strain rate and the temperature was derived by analyzing the experimental data. The flow stress is in a hyperbolic sine relationship with the strain rate,and in an Arrhenius relationship with the temperature,which imply that the process of plastic deformation at an elevated temperature for this material is thermally activated. The flow stress of the alloy during the elevated temperature deformation can be represented by a Zener-Hollomon parameter with the inclusion of the Arrhenius term. The values of n,α and A in the analytical expressions of flow stress σ are fitted to be 5.62,0.019 MPa-1 and 1.51×1016 s-1,respectively. The hot deformation activation energy is 240.85 kJ/mol.展开更多
The main goal of this study is to investigate the microstructure and electrical properties of Al–Zr–La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator...The main goal of this study is to investigate the microstructure and electrical properties of Al–Zr–La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al;Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding.展开更多
The microstructure of Mg-8Zn-1Y alloy solidified under super-high pressure was analyzed through X-ray diffraction(XRD), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). And, compression...The microstructure of Mg-8Zn-1Y alloy solidified under super-high pressure was analyzed through X-ray diffraction(XRD), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). And, compression deformation behavior at room-temperature was studied. The results showed that the microstructure of Mg-8Zn-1Y alloy solidified under ambient pressure and super-high pressure was both mainly composed of ■-Mg and quasicrystal I-Mg3Zn6 Y. Solidification under super-high pressure contributed to refining solidified microstructure and changing morphology of the intergranular second phase. The morphology of intergranular second phase(quasicrystal I-Mg3Zn6Y) was transformed from continuous network(ambient pressure) to long island(high pressure) and finally to granular(super-high pressure) with the increase in pressure. The compressive strength, yield strength and rupture strain of the samples solidified under ambient pressure were significantly improved from 262.6 MPa, 244.4 MPa and 13.3% to 437.3 MPa, 368.9 MPa and 24.7% under the pressure of 6 GPa, respectively. Under ambient pressure, cleavage plane on compressive fracture was large and smooth. When it was solidified under the pressure ranging from 4 to 6 GPa, cleavage plane on compressive fracture was small and coarse. In addition, dimple, tear ridge and lobate patterns existed.展开更多
The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and t...The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%.The microstructures during the deformation process were characterized.The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed.The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process.The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress.The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate.At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.展开更多
To reduce internal residual stress and homogenize micro-property of hot-rolled ferrite steel,the cold compression deformation method with small reduction rate has been performed in the hot-rolled samples,and X-ray dif...To reduce internal residual stress and homogenize micro-property of hot-rolled ferrite steel,the cold compression deformation method with small reduction rate has been performed in the hot-rolled samples,and X-ray diffraction and nanoindentation test have been used to detect the residual stress and micro-property.The samples with deformation rate of 0-5.59%or annealing at 550℃ are analyzed.The results show that,due to the coupling effect of thermal expansion and cold contraction and the volume expansion of microstructural transformation from austenite to ferrite,compressive residual stress was found inside the hot-rolled samples.With the increase in cold compression deformation,the dislocation density increased and the microhardness increased gradually,and there is no obvious rule for the change of mean nano-hardness in micro-zone for the center of samples.However,the uniformity of nano-hardness in the micro-zone increased first and then decreased,and the value of residual stress has obvious corresponding relationship with the uniformity of micro-zone property.The cold compression deformation with appropriate reduction rate can reduce residual stress and improve nano-hardness uniformity of the hot-rolled samples,but more deformation(such as reduction rateε=5.59%)makes residual stress increase and makes uniformity of nano-hardness deteriorate.展开更多
The influence of soaking temperature on microstructure of high temperature multi-pass compression deformation for two low carbon steels(steel A:wC=0.032%and wMn=0.25%;steel B:wC=0.165%and wMn=0.38%)is studied on the t...The influence of soaking temperature on microstructure of high temperature multi-pass compression deformation for two low carbon steels(steel A:wC=0.032%and wMn=0.25%;steel B:wC=0.165%and wMn=0.38%)is studied on the thermal-mechanical simulator in order to rationalize the hot-rolling schedule of low-carbon steel and to promote the low-temperature heating technology.The results show that the microstructures of steel A are almost not affected by reducing soaking temperature,but the acicular ferrite forms in steel B when the soaking temperature is reduced from 1 200 to 1170℃,due to its smaller initial austenite grain size according to recrystallization kinetics theory.展开更多
An investigation was performed on the effects of semi solid compression parameters,such as strain rate,compression temperature and heating time at these temperatures on deformation behaviors of two kinds of ZA27 allo...An investigation was performed on the effects of semi solid compression parameters,such as strain rate,compression temperature and heating time at these temperatures on deformation behaviors of two kinds of ZA27 alloys,one was modified by Zr and the other was unmodified.The results indicate that with the increasing of the strain,the stress of the modified composite first sharply increases to a peak value,then dramatically decreases to a plateau value,and again increases till the end of deformation.But for the unmodified,after being up to a peak value,the stress only decreases slowly.As the compression temperature or the heating time decreases,or the strain rate increases,the stress level and the cracking degree of these two kinds of alloys increase.Under the same deformation conditions,the stress level and the cracking degree of the unmodified alloy are higher than those of the modified one.But there is an exception that the stress level of the unmodified alloy is minimum and smaller than that of the modified one when deformed at the low temperature of 450℃.These phenomena were mainly discussed through analyzing the microstructures under different conditions and the deformation mechanisms at different deformation stages.展开更多
The structure of a microlens array( MLA) can be formed on copper by an indentation process which is a new manufacture approach we applied here instead of a traditional method to test the material property,thereby wo...The structure of a microlens array( MLA) can be formed on copper by an indentation process which is a new manufacture approach we applied here instead of a traditional method to test the material property,thereby work time can be saved. Single-indentation and multi-indentation are both conducted to generate a single dimple and dimples array,namely micro lens and MLA. Based on finite element simulation method,factors affecting the form accuracy,such as springback at the compressed area of one single dimple and compressional deformation at the adjacent area of dimples arrays,are determined,and the results are verified by experiments under the same conditions. Meanwhile,indenter compensation method is proposed to improve form accuracy of single dimple,and the relationship between pitch and compressional deformation is investigated by modelling seven sets of multi-indentations at different pitches to identify the critical pitch for the MLA's indentation processing. Loads and cross-sectional profiles are measured and analyzed to reveal the compressional deformation mechanism. Finally,it is found that MLA at pitches higher than 1. 47 times of its diameter can be manufactured precisely by indentation using a compensated indenter.展开更多
In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollu...In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength.展开更多
The high-temperature deformation behavior of Cu-Ni-Si-P alloy was investigated by using the hot compression test in the temperature range of 600-800 ℃ and strain rate of 0.01-5 s-1. The hot deformation activation ene...The high-temperature deformation behavior of Cu-Ni-Si-P alloy was investigated by using the hot compression test in the temperature range of 600-800 ℃ and strain rate of 0.01-5 s-1. The hot deformation activation energy, Q, was calculated and the hot compression constitutive equation was established. The processing maps of the alloy were constructed based on the experiment data and the forging process parameters were then optimized based on the generated maps for forging process determination. The flow behavior and the microstructural mechanism of the alloy were studied. The flow stress of the Cu-Ni-Si-P alloy increases with increasing strain rate and decreasing deformation temperature, and the dynamic recrystallization temperature of alloy is around 700 ℃. The hot deformation activation energy for dynamic recrystallization is determined as 485.6 kJ/mol. The processing maps for the alloy obtained at strains of 0.3 and 0.5 were used to predict the instability regimes occurring at the strain rate more than 1 s-1 and low temperature (〈650 ℃). The optimum range for the alloy hot deformation processing in the safe domain obtained from the processing map is 750-800 ℃ at the strain rate of 0.01-0.1 s i The characteristic microstructures predicted from the processing map agree well with the results of microstructural observations.展开更多
Hot compression test of a novel nickel-free white alloy Cu?12Mn?15Zn?1.5Al?0.3Ti?0.14B?0.1Ce (mass fraction, %) was conducted on a Gleeble?1500 machine in the temperature range of 600?800 °C and the strain rate r...Hot compression test of a novel nickel-free white alloy Cu?12Mn?15Zn?1.5Al?0.3Ti?0.14B?0.1Ce (mass fraction, %) was conducted on a Gleeble?1500 machine in the temperature range of 600?800 °C and the strain rate range of 0.01?10 s?1. The constitutive equation and hot processing map of the alloy were built up according to its hot deformation behavior and hot working characteristics. The deformation activation energy of the alloy is 203.005 kJ/mol. An instability region appears in the hot deformation temperature of 600?700 °C and the strain rate range of 0.32?10 s?1 when the true strain of the alloy is up to 0.7. Under the optimal hot deformation condition of 800 °C and 10 s?1 the prepared specimen has good surface quality and interior structure. The designed nickel-free alloy has very similar white chromaticity with the traditional white copper alloy (Cu?15Ni?24Zn?1.5Pb), and the color difference between them is less than 1.5, which can hardly be distinguished by human eyes.展开更多
The hot deformation behavior of a novel imitation-gold copper alloy was investigated with Gleeble-1500 thermo-mechanical simulator in the temperature range of 650-770 °C and strain rate range of 0.001-1.0 s-1. Th...The hot deformation behavior of a novel imitation-gold copper alloy was investigated with Gleeble-1500 thermo-mechanical simulator in the temperature range of 650-770 °C and strain rate range of 0.001-1.0 s-1. The hot deformation constitutive equation was established and the thermal activation energy was obtained to be 249.60 kJ/mol. The processing map at a strain of 1.2 was developed. And there are two optimal regions in processing map, namely 650-680 °C, 0.001-0.01 s-1 and 740-770 °C, 0.01-0.1 s-1. Optical microscopy was employed to investigate the microstructure evolution of the alloy in the process of deformation. Recrystallized grains and twin crystals were found in microstructures of the hot deformed alloy.展开更多
The compressive deformation behavior of as-quenched 7005 aluminum alloy was investigated at the temperature ranging from 250 °C to 450 °C and strain rate ranging from 0.0005 s-1 to 0.5 s^-1 on Gleeble-1500 t...The compressive deformation behavior of as-quenched 7005 aluminum alloy was investigated at the temperature ranging from 250 °C to 450 °C and strain rate ranging from 0.0005 s-1 to 0.5 s^-1 on Gleeble-1500 thermal-simulation machine. Experimental results show that the flow stress of as-quenched 7005 alloy is affected by both deformation temperature and strain rate, which can be represented by a Zener-Hollomon parameter in an exponent-type equation. By comparing the calculated flow stress and the measured flow stress, the results show that the calculated flow stress agrees well with the experimental result. Based on a dynamic material model, the processing maps were constructed for the strains of 0.1, 0.3 and 0.5. The maps and microstructural examination revealed that the optimum hot working domain is 270-340 °C, 0.05-0.5 s^-1 with the reasonable dynamic recrystallization. The instability domain exhibits adiabatic shear bands and flow localization, which should be avoided during hot working in order to obtain satisfactory properties.展开更多
The effects of the deformation temperature and the strain rate on the hot deformation behavior of pure copper were investigated based on compression tests. The expressions of strain hardening rate, dynamic recrystalli...The effects of the deformation temperature and the strain rate on the hot deformation behavior of pure copper were investigated based on compression tests. The expressions of strain hardening rate, dynamic recrystallization critical stress, saturated stress, dynamic recovery volume fraction and dynamic recrystallization volume fraction were determined. According to the processing map, the instability regions occur in regions of 400?450 °C, 0.001?0.05 s?1 and 450?750 °C, 0.05?1 s?1. The deformation mechanism in the stability region is dynamic recrystallization. The flow stress was predicted. The results also show that the true stress–true strain curves predicted by the extracted model are in good agreement with the experimental results.展开更多
Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and st...Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.展开更多
Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01...Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%.展开更多
The hot deformation behavior of Al?6.2Zn?0.70Mg?0.30Mn?0.17Zr alloy was investigated by isothermal compressiontest on a Gleeble?3500machine in the deformation temperature range between623and773K and the strain rate ra...The hot deformation behavior of Al?6.2Zn?0.70Mg?0.30Mn?0.17Zr alloy was investigated by isothermal compressiontest on a Gleeble?3500machine in the deformation temperature range between623and773K and the strain rate range between0.01and20s?1.The results show that the flow stress decreases with decreasing strain rate and increasing deformation temperature.Basedon the experimental results,Arrhenius constitutive equations and artificial neural network(ANN)model were established toinvestigate the flow behavior of the alloy.The calculated results show that the influence of strain on material constants can berepresented by a6th-order polynomial function.The ANN model with16neurons in hidden layer possesses perfect performanceprediction of the flow stress.The predictabilities of the two established models are different.The errors of results calculated by ANNmodel were more centralized and the mean absolute error corresponding to Arrhenius constitutive equations and ANN model are3.49%and1.03%,respectively.In predicting the flow stress of experimental aluminum alloy,the ANN model has a betterpredictability and greater efficiency than Arrhenius constitutive equations.展开更多
The effect of compressive deformation of austenite on continuous cooling transformation microstructures for 22CrSH gear steel has been investigated using a Gleeble 1500 thermal simulator. The experimental results show...The effect of compressive deformation of austenite on continuous cooling transformation microstructures for 22CrSH gear steel has been investigated using a Gleeble 1500 thermal simulator. The experimental results show that the deformation of austenite promotes the formation of proeutectoid ferrite and pearlite, and leads to the increase of critical cooling rate of proeutectoid ferrite plus pearlite microstructure. The grain boundary allotriomorphic ferrite occupies the austenite grain surfaces when the prior deformation takes place or the cooling rate is decreased, which causes a transition from bainite to acicular ferrite. The deformation enhances the stability of transformation from austenite to acicular ferrite, which results in an increase of M/A constituent.展开更多
Hot deformation behavior and microstructure evolution of hot isostatically pressed FGH96 P/M superalloy were studied using isothermal compression tests. The tests were performed on a Gleeble-1500 simulator in a temper...Hot deformation behavior and microstructure evolution of hot isostatically pressed FGH96 P/M superalloy were studied using isothermal compression tests. The tests were performed on a Gleeble-1500 simulator in a temperature range of 1000-1150 °C and strain rate of 0.001-1.0 s-1, respectively. By regression analysis of the stress—strain data, the constitutive equation for FGH96 superalloy was developed in the form of hyperbolic sine function with hot activation energy of 693.21 kJ/mol. By investigating the deformation microstructure, it is found that partial and full dynamical recrystallization occurs in specimens deformed below and above 1100 °C, respectively, and dynamical recrystallization (DRX) happens more readily with decreasing strain rate and increasing deformation temperature. Finally, equations representing the kinetics of DRX and grain size evolution were established.展开更多
The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature l...The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature lower than 900 ℃,implying recrystallization characteristics.However,steady flow stress-stain behavior is observed without peak stress when deformation is employed at temperature higher than 900 ℃,showing recovery characteristics.Micro-deformation band appears at deformation temperature of 750 ℃,and equiaxed grains are found at 800 ℃,implying the occurrence of recrystallization.When deformed at 925 ℃,the specimen shows the recovery characteristics with dislocation networks and sub-grain boundaries.展开更多
基金Project(2002AA305104) supported by the National High-Tech Research and Development Program of China
文摘The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were preformed in the temperature range of 653-773 K and in the strain rate range of 0.001-10 s-1 up to a true plastic strain of 0.7. The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature,and decreases with increasing temperature at a given imposed strain rate. The relationship between the flow stress and the strain rate and the temperature was derived by analyzing the experimental data. The flow stress is in a hyperbolic sine relationship with the strain rate,and in an Arrhenius relationship with the temperature,which imply that the process of plastic deformation at an elevated temperature for this material is thermally activated. The flow stress of the alloy during the elevated temperature deformation can be represented by a Zener-Hollomon parameter with the inclusion of the Arrhenius term. The values of n,α and A in the analytical expressions of flow stress σ are fitted to be 5.62,0.019 MPa-1 and 1.51×1016 s-1,respectively. The hot deformation activation energy is 240.85 kJ/mol.
基金Sichuan Provincial Development and Reform Commission for funding this work by Panxi Strategic Resources Innovation Development Fund (2015)the department of Science and Technology of Sichuan Province (2015GZ0052)
文摘The main goal of this study is to investigate the microstructure and electrical properties of Al–Zr–La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al;Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding.
基金Project supported by National Natural Science Foundation of China(51475486)Natural Science Foundation of Hebei Province(E2013501096)
文摘The microstructure of Mg-8Zn-1Y alloy solidified under super-high pressure was analyzed through X-ray diffraction(XRD), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). And, compression deformation behavior at room-temperature was studied. The results showed that the microstructure of Mg-8Zn-1Y alloy solidified under ambient pressure and super-high pressure was both mainly composed of ■-Mg and quasicrystal I-Mg3Zn6 Y. Solidification under super-high pressure contributed to refining solidified microstructure and changing morphology of the intergranular second phase. The morphology of intergranular second phase(quasicrystal I-Mg3Zn6Y) was transformed from continuous network(ambient pressure) to long island(high pressure) and finally to granular(super-high pressure) with the increase in pressure. The compressive strength, yield strength and rupture strain of the samples solidified under ambient pressure were significantly improved from 262.6 MPa, 244.4 MPa and 13.3% to 437.3 MPa, 368.9 MPa and 24.7% under the pressure of 6 GPa, respectively. Under ambient pressure, cleavage plane on compressive fracture was large and smooth. When it was solidified under the pressure ranging from 4 to 6 GPa, cleavage plane on compressive fracture was small and coarse. In addition, dimple, tear ridge and lobate patterns existed.
基金Project(50874049) supported by the National Natural Science Foundation of ChinaProject(2008DFB50020) supported by International Science and Technology Cooperation of Ministry of Science and Technology of China
文摘The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%.The microstructures during the deformation process were characterized.The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed.The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process.The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress.The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate.At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.
基金support from Guangxi Science and Technology Major Project of China(Grant No.AA18242012-1).
文摘To reduce internal residual stress and homogenize micro-property of hot-rolled ferrite steel,the cold compression deformation method with small reduction rate has been performed in the hot-rolled samples,and X-ray diffraction and nanoindentation test have been used to detect the residual stress and micro-property.The samples with deformation rate of 0-5.59%or annealing at 550℃ are analyzed.The results show that,due to the coupling effect of thermal expansion and cold contraction and the volume expansion of microstructural transformation from austenite to ferrite,compressive residual stress was found inside the hot-rolled samples.With the increase in cold compression deformation,the dislocation density increased and the microhardness increased gradually,and there is no obvious rule for the change of mean nano-hardness in micro-zone for the center of samples.However,the uniformity of nano-hardness in the micro-zone increased first and then decreased,and the value of residual stress has obvious corresponding relationship with the uniformity of micro-zone property.The cold compression deformation with appropriate reduction rate can reduce residual stress and improve nano-hardness uniformity of the hot-rolled samples,but more deformation(such as reduction rateε=5.59%)makes residual stress increase and makes uniformity of nano-hardness deteriorate.
基金the National Natural Science Foundation of China(Nos.50971137 and 50934011)
文摘The influence of soaking temperature on microstructure of high temperature multi-pass compression deformation for two low carbon steels(steel A:wC=0.032%and wMn=0.25%;steel B:wC=0.165%and wMn=0.38%)is studied on the thermal-mechanical simulator in order to rationalize the hot-rolling schedule of low-carbon steel and to promote the low-temperature heating technology.The results show that the microstructures of steel A are almost not affected by reducing soaking temperature,but the acicular ferrite forms in steel B when the soaking temperature is reduced from 1 200 to 1170℃,due to its smaller initial austenite grain size according to recrystallization kinetics theory.
文摘An investigation was performed on the effects of semi solid compression parameters,such as strain rate,compression temperature and heating time at these temperatures on deformation behaviors of two kinds of ZA27 alloys,one was modified by Zr and the other was unmodified.The results indicate that with the increasing of the strain,the stress of the modified composite first sharply increases to a peak value,then dramatically decreases to a plateau value,and again increases till the end of deformation.But for the unmodified,after being up to a peak value,the stress only decreases slowly.As the compression temperature or the heating time decreases,or the strain rate increases,the stress level and the cracking degree of these two kinds of alloys increase.Under the same deformation conditions,the stress level and the cracking degree of the unmodified alloy are higher than those of the modified one.But there is an exception that the stress level of the unmodified alloy is minimum and smaller than that of the modified one when deformed at the low temperature of 450℃.These phenomena were mainly discussed through analyzing the microstructures under different conditions and the deformation mechanisms at different deformation stages.
基金Supported by the National Natural Science Foundation of China(51375050)
文摘The structure of a microlens array( MLA) can be formed on copper by an indentation process which is a new manufacture approach we applied here instead of a traditional method to test the material property,thereby work time can be saved. Single-indentation and multi-indentation are both conducted to generate a single dimple and dimples array,namely micro lens and MLA. Based on finite element simulation method,factors affecting the form accuracy,such as springback at the compressed area of one single dimple and compressional deformation at the adjacent area of dimples arrays,are determined,and the results are verified by experiments under the same conditions. Meanwhile,indenter compensation method is proposed to improve form accuracy of single dimple,and the relationship between pitch and compressional deformation is investigated by modelling seven sets of multi-indentations at different pitches to identify the critical pitch for the MLA's indentation processing. Loads and cross-sectional profiles are measured and analyzed to reveal the compressional deformation mechanism. Finally,it is found that MLA at pitches higher than 1. 47 times of its diameter can be manufactured precisely by indentation using a compensated indenter.
文摘In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength.
基金Project(51101052) supported by the National Natural Science Foundation of China
文摘The high-temperature deformation behavior of Cu-Ni-Si-P alloy was investigated by using the hot compression test in the temperature range of 600-800 ℃ and strain rate of 0.01-5 s-1. The hot deformation activation energy, Q, was calculated and the hot compression constitutive equation was established. The processing maps of the alloy were constructed based on the experiment data and the forging process parameters were then optimized based on the generated maps for forging process determination. The flow behavior and the microstructural mechanism of the alloy were studied. The flow stress of the Cu-Ni-Si-P alloy increases with increasing strain rate and decreasing deformation temperature, and the dynamic recrystallization temperature of alloy is around 700 ℃. The hot deformation activation energy for dynamic recrystallization is determined as 485.6 kJ/mol. The processing maps for the alloy obtained at strains of 0.3 and 0.5 were used to predict the instability regimes occurring at the strain rate more than 1 s-1 and low temperature (〈650 ℃). The optimum range for the alloy hot deformation processing in the safe domain obtained from the processing map is 750-800 ℃ at the strain rate of 0.01-0.1 s i The characteristic microstructures predicted from the processing map agree well with the results of microstructural observations.
基金Project(51271203)supported by the National Natural Science Foundation of ChinaProject(CX2012B037)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China+1 种基金Project(2013zzts017)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,ChinaProject(2012bjjxj015)supported by the Excellent Doctor Degree Thesis Support Foundation of Central South University,China
文摘Hot compression test of a novel nickel-free white alloy Cu?12Mn?15Zn?1.5Al?0.3Ti?0.14B?0.1Ce (mass fraction, %) was conducted on a Gleeble?1500 machine in the temperature range of 600?800 °C and the strain rate range of 0.01?10 s?1. The constitutive equation and hot processing map of the alloy were built up according to its hot deformation behavior and hot working characteristics. The deformation activation energy of the alloy is 203.005 kJ/mol. An instability region appears in the hot deformation temperature of 600?700 °C and the strain rate range of 0.32?10 s?1 when the true strain of the alloy is up to 0.7. Under the optimal hot deformation condition of 800 °C and 10 s?1 the prepared specimen has good surface quality and interior structure. The designed nickel-free alloy has very similar white chromaticity with the traditional white copper alloy (Cu?15Ni?24Zn?1.5Pb), and the color difference between them is less than 1.5, which can hardly be distinguished by human eyes.
基金Project(11JJ2025)supported by Natural Science Foundation of Hunan Province,ChinaProject(y2010-01-004)supported by the Nonferrous Metals Science Foundation of HNG-CSU,China
文摘The hot deformation behavior of a novel imitation-gold copper alloy was investigated with Gleeble-1500 thermo-mechanical simulator in the temperature range of 650-770 °C and strain rate range of 0.001-1.0 s-1. The hot deformation constitutive equation was established and the thermal activation energy was obtained to be 249.60 kJ/mol. The processing map at a strain of 1.2 was developed. And there are two optimal regions in processing map, namely 650-680 °C, 0.001-0.01 s-1 and 740-770 °C, 0.01-0.1 s-1. Optical microscopy was employed to investigate the microstructure evolution of the alloy in the process of deformation. Recrystallized grains and twin crystals were found in microstructures of the hot deformed alloy.
基金Project(2011CB612200)supported by the National Basic Research Program of China
文摘The compressive deformation behavior of as-quenched 7005 aluminum alloy was investigated at the temperature ranging from 250 °C to 450 °C and strain rate ranging from 0.0005 s-1 to 0.5 s^-1 on Gleeble-1500 thermal-simulation machine. Experimental results show that the flow stress of as-quenched 7005 alloy is affected by both deformation temperature and strain rate, which can be represented by a Zener-Hollomon parameter in an exponent-type equation. By comparing the calculated flow stress and the measured flow stress, the results show that the calculated flow stress agrees well with the experimental result. Based on a dynamic material model, the processing maps were constructed for the strains of 0.1, 0.3 and 0.5. The maps and microstructural examination revealed that the optimum hot working domain is 270-340 °C, 0.05-0.5 s^-1 with the reasonable dynamic recrystallization. The instability domain exhibits adiabatic shear bands and flow localization, which should be avoided during hot working in order to obtain satisfactory properties.
基金Project(cstc2015jcyj BX0115)supported by the Chongqing Research Program of Basic Research and Frontier Technology,China
文摘The effects of the deformation temperature and the strain rate on the hot deformation behavior of pure copper were investigated based on compression tests. The expressions of strain hardening rate, dynamic recrystallization critical stress, saturated stress, dynamic recovery volume fraction and dynamic recrystallization volume fraction were determined. According to the processing map, the instability regions occur in regions of 400?450 °C, 0.001?0.05 s?1 and 450?750 °C, 0.05?1 s?1. The deformation mechanism in the stability region is dynamic recrystallization. The flow stress was predicted. The results also show that the true stress–true strain curves predicted by the extracted model are in good agreement with the experimental results.
基金Project(51271076)supported by the National Natural Science Foundation of China
文摘Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.
基金Project(51301065)supported by the National Natural Science Foundation of ChinaProject(15B063)supported by the Youth Research Foundation of Education Bureau of Hunan Province,China
文摘Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%.
基金Project(2016GK1004) supported by the Science and Technology Major Project of Hunan Province,China
文摘The hot deformation behavior of Al?6.2Zn?0.70Mg?0.30Mn?0.17Zr alloy was investigated by isothermal compressiontest on a Gleeble?3500machine in the deformation temperature range between623and773K and the strain rate range between0.01and20s?1.The results show that the flow stress decreases with decreasing strain rate and increasing deformation temperature.Basedon the experimental results,Arrhenius constitutive equations and artificial neural network(ANN)model were established toinvestigate the flow behavior of the alloy.The calculated results show that the influence of strain on material constants can berepresented by a6th-order polynomial function.The ANN model with16neurons in hidden layer possesses perfect performanceprediction of the flow stress.The predictabilities of the two established models are different.The errors of results calculated by ANNmodel were more centralized and the mean absolute error corresponding to Arrhenius constitutive equations and ANN model are3.49%and1.03%,respectively.In predicting the flow stress of experimental aluminum alloy,the ANN model has a betterpredictability and greater efficiency than Arrhenius constitutive equations.
基金Item Sponsored by National Basic Research Programof China (G2000067208-4)
文摘The effect of compressive deformation of austenite on continuous cooling transformation microstructures for 22CrSH gear steel has been investigated using a Gleeble 1500 thermal simulator. The experimental results show that the deformation of austenite promotes the formation of proeutectoid ferrite and pearlite, and leads to the increase of critical cooling rate of proeutectoid ferrite plus pearlite microstructure. The grain boundary allotriomorphic ferrite occupies the austenite grain surfaces when the prior deformation takes place or the cooling rate is decreased, which causes a transition from bainite to acicular ferrite. The deformation enhances the stability of transformation from austenite to acicular ferrite, which results in an increase of M/A constituent.
文摘Hot deformation behavior and microstructure evolution of hot isostatically pressed FGH96 P/M superalloy were studied using isothermal compression tests. The tests were performed on a Gleeble-1500 simulator in a temperature range of 1000-1150 °C and strain rate of 0.001-1.0 s-1, respectively. By regression analysis of the stress—strain data, the constitutive equation for FGH96 superalloy was developed in the form of hyperbolic sine function with hot activation energy of 693.21 kJ/mol. By investigating the deformation microstructure, it is found that partial and full dynamical recrystallization occurs in specimens deformed below and above 1100 °C, respectively, and dynamical recrystallization (DRX) happens more readily with decreasing strain rate and increasing deformation temperature. Finally, equations representing the kinetics of DRX and grain size evolution were established.
文摘The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature lower than 900 ℃,implying recrystallization characteristics.However,steady flow stress-stain behavior is observed without peak stress when deformation is employed at temperature higher than 900 ℃,showing recovery characteristics.Micro-deformation band appears at deformation temperature of 750 ℃,and equiaxed grains are found at 800 ℃,implying the occurrence of recrystallization.When deformed at 925 ℃,the specimen shows the recovery characteristics with dislocation networks and sub-grain boundaries.