期刊文献+
共找到6,848篇文章
< 1 2 250 >
每页显示 20 50 100
Chaotic CS Encryption:An Efficient Image Encryption Algorithm Based on Chebyshev Chaotic System and Compressive Sensing
1
作者 Mingliang Sun Jie Yuan +1 位作者 Xiaoyong Li Dongxiao Liu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2625-2646,共22页
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori... Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors. 展开更多
关键词 image encryption chaotic system compressive sensing arnold transform
下载PDF
Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
2
作者 王一铭 黄树锋 +2 位作者 陈煌 杨健 蔡述庭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期287-302,共16页
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete... A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality. 展开更多
关键词 visual security image encryption parallel compressive sensing edge detection embedding
下载PDF
Deep plug-and-play self-supervised neural networks for spectral snapshot compressive imaging
3
作者 ZHANG Xing-Yu ZHU Shou-Zheng +4 位作者 ZHOU Tian-Shu QI Hong-Xing WANG Jian-Yu LI Chun-Lai LIU Shi-Jie 《红外与毫米波学报》 CSCD 北大核心 2024年第6期846-857,共12页
The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then de⁃code it in... The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then de⁃code it into three-dimensional spectral data through deep neural networks.However,training the deep neural net⁃works requires a large amount of clean data that is difficult to obtain.To address the problem of insufficient train⁃ing data for deep neural networks,a self-supervised hyperspectral denoising neural network based on neighbor⁃hood sampling is proposed.This network is integrated into a deep plug-and-play framework to achieve self-super⁃vised spectral reconstruction.The study also examines the impact of different noise degradation models on the fi⁃nal reconstruction quality.Experimental results demonstrate that the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18 dB and improves the structural similarity by 0.009 compared with the supervised learning method.Additionally,it achieves better visual reconstruction results. 展开更多
关键词 compressed sensing deep learning self-supervised coded aperture imaging
下载PDF
Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm 被引量:2
4
作者 Haipeng Zhang Ke Li +2 位作者 Changzhe Zhao Jie Tang Tiqiao Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期349-357,共9页
Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident... Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI. 展开更多
关键词 x-ray ghost imaging modified compressive sensing algorithm real-time x-ray imaging
下载PDF
Correspondence normalized ghost imaging on compressive sensing 被引量:2
5
作者 赵生妹 庄鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期287-291,共5页
Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibili... Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale "double-slit" image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale "lena" object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using G1 and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale "double-slit" object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time. 展开更多
关键词 ghost imaging compressive sensing time-correspondence NORMALIZING
下载PDF
High Capacity Data Hiding in Encrypted Image Based on Compressive Sensing for Nonequivalent Resources 被引量:2
6
作者 Di Xiao Jia Liang +2 位作者 Qingqing Ma Yanping Xiang Yushu Zhang 《Computers, Materials & Continua》 SCIE EI 2019年第1期1-13,共13页
To fulfill the requirements of data security in environments with nonequivalent resources,a high capacity data hiding scheme in encrypted image based on compressive sensing(CS)is proposed by fully utilizing the adapta... To fulfill the requirements of data security in environments with nonequivalent resources,a high capacity data hiding scheme in encrypted image based on compressive sensing(CS)is proposed by fully utilizing the adaptability of CS to nonequivalent resources.The original image is divided into two parts:one part is encrypted with traditional stream cipher;the other part is turned to the prediction error and then encrypted based on CS to vacate room simultaneously.The collected non-image data is firstly encrypted with simple stream cipher.For data security management,the encrypted non-image data is then embedded into the encrypted image,and the scrambling operation is used to further improve security.Finally,the original image and non-image data can be separably recovered and extracted according to the request from the valid users with different access rights.Experimental results demonstrate that the proposed scheme outperforms other data hiding methods based on CS,and is more suitable for nonequivalent resources. 展开更多
关键词 compressive SENSING encrypted imagE data hiding PREDICTION ERROR nonequivalent RESOURCES
下载PDF
A Robust and Efficient Compressed Sensing Algorithm for Wideband Acoustic Imaging 被引量:1
7
作者 Fangli Ning Zhe Liu +3 位作者 Jiahao Song Feng Pan Pengcheng Han Juan Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第6期77-92,共16页
Wideband acoustic imaging,which combines compressed sensing(CS)and microphone arrays,is widely used for locating acoustic sources.However,the location results of this method are unstable,and the computational efficien... Wideband acoustic imaging,which combines compressed sensing(CS)and microphone arrays,is widely used for locating acoustic sources.However,the location results of this method are unstable,and the computational efficiency is low.In this work,in order to improve the robustness and reduce the computational cost,a DCS-SOMP-SVD compressed sensing method,which combines the distributed compressed sensing using simultaneously orthogonal matching pursuit(DCS-SOMP)and singular value decomposition(SVD)is proposed.The performance of the DCS-SOMP-SVD is studied through both simulation and experiment.In the simulation,the locating results of the DCS-SOMP-SVD method are compared with the wideband BP method and the DCS-SOMP method.In terms of computational efficiency,the proposed method is as efficient as the DCS-SOMP method and more efficient than the wideband BP method.In terms of locating accuracy,the proposed method can still locate all sources when the signal to noise ratio(SNR)is−20 dB,while the wideband BP method and the DCS-SOMP method can only locate all sources when the SNR is higher than 0 dB.The performance of the proposed method can be improved by expanding the frequency range.Moreover,there is no extra source in the maps of the proposed method,even though the target sparsity is overestimated.Finally,a gas leak experiment is conducted to verify the feasibility of the DCS-SOMP-SVD method in the practical engineering environment.The experimental results show that the proposed method can locate both two leak sources in different frequency ranges.This research proposes a DCS-SOMP-SVD method which has sufficient robustness and low computational cost for wideband acoustic imaging. 展开更多
关键词 Wideband acoustic imaging compressed sensing Singular value decomposition Microphone array Gas leakage
下载PDF
Computational Spectral Imaging Based on Compressive Sensing 被引量:1
8
作者 Chao Wang Xue-Feng Liu +7 位作者 Wen-Kai Yu Xu-Ri Yao Fu Zheng Qian Dong Ruo-Ming Lan Zhi-Bin Sun Guang-Jie Zhai Qing Zhao 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期44-48,共5页
Spectral imaging is an important tool for a wide variety of applications. We present a technique for spectral imaging using computational imaging pattern based on compressive sensing (CS). The spectral and spatial i... Spectral imaging is an important tool for a wide variety of applications. We present a technique for spectral imaging using computational imaging pattern based on compressive sensing (CS). The spectral and spatial infor- mation is simultaneously obtained using a fiber spectrometer and the spatial light modulation without mechanical scanning. The method allows high-speed, stable, and sub sampling acquisition of spectral data from specimens. The relationship between sampling rate and image quality is discussed and two CS algorithms are compared. 展开更多
关键词 Computational Spectral imaging Based on compressive Sensing DMD
下载PDF
Coded aperture compressive imaging array applied for surveillance systems
9
作者 Jing Chen Yongtian Wang Hanxiao Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期1019-1028,共10页
This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detectio... This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detection algorithm in video using compressive image data are developed. Coded masks with random Gaussian, Toeplitz and random binary are utilized to simulate the compressive image respectively. For compressive images, a mixture of the Gaussian distribution is applied to the compressed image field to model the background. A simple threshold test in compressive sampling image is used to declare motion objects. Foreground image retrieval from underdetermined measurement using the total variance optimization algorithm is explored. The signal-to-noise ratio (SNR) is employed to evaluate the image quality recovered from the compressive sampling signals, and receiver operation characteristic (ROC) curves are used to quantify the performance of the motion detection algorithm. Experimental results demonstrate that the low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz mask, motion detection algorithms using the random binary phase mask can yield better detection results. However using the random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed images. 展开更多
关键词 compressive imaging coded aperture compressive sensing motion detection
下载PDF
Piecewise spectrally band-pass for compressive coded aperture spectral imaging
10
作者 钱路路 吕群波 +1 位作者 黄旻 相里斌 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期248-253,共6页
Coded aperture snapshot spectral imaging(CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reco... Coded aperture snapshot spectral imaging(CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional(2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes,the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed threedimensional(3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio(PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. 展开更多
关键词 coded aperture spectral imaging compressive sensing information reconstruction
下载PDF
Efficient Compressive Multi-Focus Image Fusion
11
作者 Chao Yang Bin Yang 《Journal of Computer and Communications》 2014年第9期78-86,共9页
Two key points of pixel-level multi-focus image fusion are the clarity measure and the pixel coeffi- cients fusion rule. Along with different improvements on these two points, various fusion schemes have been proposed... Two key points of pixel-level multi-focus image fusion are the clarity measure and the pixel coeffi- cients fusion rule. Along with different improvements on these two points, various fusion schemes have been proposed in literatures. However, the traditional clarity measures are not designed for compressive imaging measurements which are maps of source sense with random or likely ran- dom measurements matrix. This paper presents a novel efficient multi-focus image fusion frame- work for compressive imaging sensor network. Here the clarity measure of the raw compressive measurements is not obtained from the random sampling data itself but from the selected Hada- mard coefficients which can also be acquired from compressive imaging system efficiently. Then, the compressive measurements with different images are fused by selecting fusion rule. Finally, the block-based CS which coupled with iterative projection-based reconstruction is used to re- cover the fused image. Experimental results on common used testing data demonstrate the effectiveness of the proposed method. 展开更多
关键词 CLARITY Measures compressive imaging Multi-Focus imagE FUSION
下载PDF
Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
12
作者 Fan Liu Xue-Feng Liu +4 位作者 Ruo-Ming Lan Xu-Ri Yao Shen-Cheng Dou Xiao-Qing Wang Guang-Jie Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期275-282,共8页
Imaging quality is a critical component of compressive imaging in real applications. In this study, we propose a compressive imaging method based on multi-scale modulation and reconstruction in the spatial frequency d... Imaging quality is a critical component of compressive imaging in real applications. In this study, we propose a compressive imaging method based on multi-scale modulation and reconstruction in the spatial frequency domain. Theoretical analysis and simulation show the relation between the measurement matrix resolution and compressive sensing(CS)imaging quality. The matrix design is improved to provide multi-scale modulations, followed by individual reconstruction of images of different spatial frequencies. Compared with traditional single-scale CS imaging, the multi-scale method provides high quality imaging in both high and low frequencies, and effectively decreases the overall reconstruction error.Experimental results confirm the feasibility of this technique, especially at low sampling rate. The method may thus be helpful in promoting the implementation of compressive imaging in real applications. 展开更多
关键词 compressed sensing imaging quality spatial frequency domain multi-scale modulation
下载PDF
Optimized Three-Dimensional Cardiovascular Magnetic Resonance Whole Heart Imaging Utilizing Non-Selective Excitation and Compressed Sensing in Children and Adults with Congenital Heart Disease
13
作者 Ingo Paetsch Roman Gebauer +7 位作者 Christian Paech Frank-Thomas Riede Sabrina Oebel Andreas Bollmann Christian Stehning Jouke Smink Ingo Daehnert Cosima Jahnke 《Congenital Heart Disease》 SCIE 2023年第3期279-294,共16页
Background:In congenital heart disease(CHD)patients,detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making.Hence,the present study investigated the applicabil... Background:In congenital heart disease(CHD)patients,detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making.Hence,the present study investigated the applicability of an advanced cardiovascular magnetic resonance(CMR)whole heart imaging approach utilizing nonselective excitation and compressed sensing for anatomical assessment and interventional guidance of CHD patients in comparison to conventional dynamic CMR angiography.Methods:86 consecutive pediatric patients and adults with congenital heart disease(age,1 to 74 years;mean,35 years)underwent CMR imaging including a freebreathing,ECG-triggered 3D nonselective SSFP whole heart acquisition using compressed SENSE(nsWHcs).Anatomical assessability and signal intensity ratio(SIR)measurements were compared with conventional dynamic 3D-/4D-MR angiography.Results:The most frequent diagnoses were partial anomalous pulmonary venous drainage(17/86,20%),transposition of the great arteries(15/86,17%),tetralogy of Fallot(12/86,14%),and a single ventricle(7/86,8%).Image quality of nsWHcs was rated as excellent/good in 98%of patients.nsWHcs resulted in a reliable depiction of all large thoracic vessels(anatomic assessability,99%–100%)and the proximal segments of coronary arteries and coronary sinus(>90%).nsWHcs achieved a homogenously distributed SIR in all cardiac cavities and thoracic vessels without a significant difference between pulmonary and systemic circulation(10.9±3.5 and 10.6±3.4;p=0.15),while 3D angiography showed significantly increased SIR for targeted vs.non-targeted circulation(PA-angiography,15.2±8.1 vs.5.8±3.6,p<0.001;PV-angiography,7.0±3.9 vs.17.3±6.8,p<0.001).Conclusions:The proposed nsWHcs imaging approach provided a consistently high image quality and a homogeneous signal intensity distribution within the pulmonary and systemic circulation in pediatric patients and adults with a wide spectrum of congenital heart diseases.nsWHcs enabled detailed anatomical assessment and three-dimensional reconstruction of all cardiac cavities and large thoracic vessels and can be regarded particularly useful for preprocedural planning and interventional guidance in CHD patients. 展开更多
关键词 Cardiovascular magnetic resonance imaging congenital heart disease whole heart imaging nonselective SSFP compressed SENSE MR angiography
下载PDF
Compressive near-field millimeter wave imaging algorithm based on Gini index and total variation mixed regularization
14
作者 Jue Lyu Dong-Jie Bi +7 位作者 Bo Liu Guo Yi Xue-Peng Zheng Xi-Feng Li Li-Biao Peng Yong-Le Xie Yi-Ming Zhang Ying-Li Bai 《Journal of Electronic Science and Technology》 CAS CSCD 2023年第1期65-74,共10页
A compressive near-field millimeter wave(MMW)imaging algorithm is proposed.From the compressed sensing(CS)theory,the compressive near-field MMW imaging process can be considered to reconstruct an image from the under-... A compressive near-field millimeter wave(MMW)imaging algorithm is proposed.From the compressed sensing(CS)theory,the compressive near-field MMW imaging process can be considered to reconstruct an image from the under-sampled sparse data.The Gini index(GI)has been founded that it is the only sparsity measure that has all sparsity attributes that are called Robin Hood,Scaling,Rising Tide,Cloning,Bill Gates,and Babies.By combining the total variation(TV)operator,the GI-TV mixed regularization introduced compressive near-field MMW imaging model is proposed.In addition,the corresponding algorithm based on a primal-dual framework is also proposed.Experimental results demonstrate that the proposed GI-TV mixed regularization algorithm has superior convergence and stability performance compared with the widely used l1-TV mixed regularization algorithm. 展开更多
关键词 Millimeter wave(MMW) compressed sensing(CS) Gini index(GI) Total variation(TV) Signal processing image reconstruction
下载PDF
Face hallucination via compressive sensing 被引量:1
15
作者 杨学峰 程耀瑜 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期149-154,共6页
Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compress... Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compressive sensing based face hallucination method is presented,which is comprised of three steps:dictionary learning、sparse coding and solving maximum a posteriori(MAP)formulation.In the first step,the K-SVD dictionary learning algorithm is adopted to obtain a dictionary which can sparsely represent high resolution(HR)face image patches.In the second step,we seek the sparsest representation for each low-resolution(LR)face image paches input using the learned dictionary,super resolution image blocks are obtained from the sparsest coefficients and dictionaries,which then are assembled into super-resolution(SR)image.Finally,MAP formulation is introduced to satisfy the consistency restrictive condition and obtain the higher quality HR images.The experimental results demonstrate that our approach can achieve better super-resolution faces compared with other state-of-the-art method. 展开更多
关键词 face image super-resolution image face hallucination compressive sensing(CS)
下载PDF
Restoration of the JPEG Maximum Lossy Compressed Face Images with Hourglass Block-GAN 被引量:1
16
作者 Jongwook Si Sungyoung Kim 《Computers, Materials & Continua》 SCIE EI 2024年第3期2893-2908,共16页
In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the imag... In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the image to its original quality.The challenge lies in regenerating significantly compressed images into a state in which these become identifiable.Therefore,this study focuses on the restoration of JPEG images subjected to substantial degradation caused by maximum lossy compression using Generative Adversarial Networks(GAN).The generator in this network is based on theU-Net architecture.It features a newhourglass structure that preserves the characteristics of the deep layers.In addition,the network incorporates two loss functions to generate natural and high-quality images:Low Frequency(LF)loss and High Frequency(HF)loss.HF loss uses a pretrained VGG-16 network and is configured using a specific layer that best represents features.This can enhance the performance in the high-frequency region.In contrast,LF loss is used to handle the low-frequency region.The two loss functions facilitate the generation of images by the generator,which can mislead the discriminator while accurately generating high-and low-frequency regions.Consequently,by removing the blocking effects frommaximum lossy compressed images,images inwhich identities could be recognized are generated.This study represents a significant improvement over previous research in terms of the image resolution performance. 展开更多
关键词 JPEG lossy compression RESTORATION image generation GAN
下载PDF
Characterization of neurovascular compression in facial neuralgia patients by 3D high-resolution MRI and image fusion technique 被引量:7
17
作者 Jing Chen Zi-Yi Guo +7 位作者 Guang Yang Xiong Wang Qing-Yu Tang Yue-Qiong Cheng Yi Guo Shui-Xi Fu Cai-Xiang Chen Xiang-Jun Han 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2012年第6期476-479,共4页
Objective:To describe the anatomical characteristics and patterns of neurovascular compression (NVC) in patients suffering trigeminal neuralgia(TN) by 3D high-resolution magnetic resonance imaging(MRI) method and imag... Objective:To describe the anatomical characteristics and patterns of neurovascular compression (NVC) in patients suffering trigeminal neuralgia(TN) by 3D high-resolution magnetic resonance imaging(MRI) method and image fusion technique.Methods:The anatomic structure of trigeminal nerve,brain stem and blood vessel was observed in 100 consecutive TN patients by 3D high resolution MRI(3D SPGR,contrast-enhanced T1 3D MP-RAGE and T2/T1 3D FIESTA). The 3D image sources were fused and visualized using 3D DOCTOR software.Results:One or several NVC sites,which usually appeared 0-9.8 mm away from brain stem,were found on the symptomatic side in 93%of the TN cases.Superior cerebellar artery was involved in 76%(71/93) of these cases.The other vessels including antero-inferior cerebellar artery,vertebral artery, basilar artery and veins also contributed to the occurrence of NVC.The NVC sites were found to be located in the proximal segment in 42%of these cases(39/93) and in the distal segment in 45% (42/93).Nerve dislocation or distortion was observed in 32%(30/93).Conclusions:Various 3D high resolution MRI methods combined with the image fusion technique could provide pathologic anatomic information for the diagnosis and treatment of TN. 展开更多
关键词 NEUROVASCULAR compression FAciAL NEURALGIA Magnetic RESONANCE imaging imagE FUSION
下载PDF
Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation 被引量:14
18
作者 H. Munoz A. Taheri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期599-610,共12页
The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in sp... The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in specimens with different aspect ratios was also examined.Peak stress,post-peak portion of stress-strain,brittleness,characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio.Strain patterns of the rocks were obtained by applying three-dimensional(3D) digital image correlation(DIC) technique.Unlike conventional strain measurement using strain gauges attached to specimen,3D DIC allowed not only measuring large strains,but more importantly,mapping the development of field strain throughout the compression test,i.e.in pre-and post-peak regimes.Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime.However,in post-peak regime,strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone.The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation.Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime. 展开更多
关键词 Uniaxial compression test Aspect ratio Strain patterns Digital image correlation(DIC)
下载PDF
Algorithm for reconstructing compressed sensing color imaging using the quaternion total variation
19
作者 廖帆 严路 +2 位作者 伍家松 韩旭 舒华忠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期51-54,共4页
A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing abil... A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts. 展开更多
关键词 total variation compressed sensing quatemion sparse reconstruction color image restoration
下载PDF
Novel imaging methods of stepped frequency radar based on compressed sensing 被引量:4
20
作者 Jihong Liu Shaokun Xu Xunzhang Gao Xiang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期47-56,共10页
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle... The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless. 展开更多
关键词 radar imaging compressed sensing (CS) stepped frequency random sampling.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部