期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Dynamic compressive property and failure behavior of extruded Mg-Gd-Y alloy under high temperatures and high strain rates 被引量:8
1
作者 Jin-cheng Yu Zheng Liu +1 位作者 Yang Dong Zhi Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第2期134-141,共8页
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope... For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature. 展开更多
关键词 Extruded Mg-Gd-Y magnesium alloy Split Hopkinson Pressure Bar Dynamic compressive property Failure behavior High strain rates High temperature
下载PDF
Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel 被引量:1
2
作者 Lingzhi Xie Zhigang Xu +4 位作者 Yunzhe Qi Jinrong Liang Peng He Qiang Shen Chuanbin Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期917-929,共13页
In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicat... In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicated that the powder size significantly decreased,and the morphology of the Fe powder tended to be increasingly flat as the milling time increased.However,the prolonged milling duration had limited impact on the phase transition of the powder mixture.The main phases of all the samples sintered at 640℃ were α-Fe,α-Mn and Al,and a small amount of Fe2Al5 and Al8Mn5.When the sintering temperature increased to 1200℃,the phase composition was mainly comprised of γ-Fe and α-Fe.The weight loss fraction of the sintered sample decreased with milling time,i.e.,8.3wt% after 20 h milling compared to15.3wt% for 10 h.The Mn depletion region(MDR) for the 10,15,and 20 h milled samples was about 780,600,and 370 μm,respectively.The total porosity of samples sintered at 640℃ decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder.After sintering at 1200℃,the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%,respectively.The compressive strength and ductility of the 1200℃ sintered porous steel increased as the milling time increased. 展开更多
关键词 powder metallurgy porous steel ball milling time microstructure evolution compressive properties
下载PDF
Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete
3
作者 Guiwu Lin Kaige Liu +2 位作者 Yuliang Chen Yunpeng Ji Rui Jiang 《Journal of Renewable Materials》 EI 2023年第11期3957-3975,共19页
This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete.A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were c... This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete.A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were conducted under a uniaxial compressive test.The failure modes,stress-strain whole curves,peak stress,peak strain,and energy dissipation capacity were systematically observed and revealed.Test results indicate that steel fiber has the best modification effect on energy dissipation capacity and the toughness index of recycled concrete,corresponding to the enhancement of 81.75% and 22.90% on average.The addition of polyvinyl alcohol fiber can effectively improve the compressive strength and energy dissipation capacity of recycled aggregate concrete by 28.49% and 29.43% on average,respectively.The compressive strength and energy dissipation capacity of recycled aggregate concrete is increased by an average of 16.5% and 24.4% by incorporating carbon fiber.The energy dissipation capacity of recycled aggregate concrete is increased by an average of 13.5% with the incorporation of polypropylene fiber.However,the addition of carbon fiber results in a slight reduction of toughness by 16.97%,and the effect of polyvinyl alcohol fiber on the energy dissipation capacity is limited.Besides,with the increase in replacement rate,the compressive strength and the energy dissipation capacity of recycled coarse aggregate concrete with fiber decreased,and toughness first decreased and then increased.Finally,based on the analysis of test data,a segment-based stress-strain model of fiber recycled aggregate concrete was proposed,which shows good agreement with the test results. 展开更多
关键词 Recycled aggregate concrete FIBER compressive properties energy dissipation TOUGHNESS
下载PDF
Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam 被引量:8
4
作者 X.C.Xia X.W.Chen +4 位作者 Z.Zhang X.Chen W.M.Zhao B.Liao B.Hur 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第4期330-335,共6页
In our current work,AZ31 magnesium alloy foams with closed-cell were successfully fabricated by melt foaming method using Ca and CaCO3 as thickening and blowing agent,respectively.The influences of porosity and pore s... In our current work,AZ31 magnesium alloy foams with closed-cell were successfully fabricated by melt foaming method using Ca and CaCO3 as thickening and blowing agent,respectively.The influences of porosity and pore size on the quasi-static compressive properties of the foams were systematically investigated.The results showed that the yield strength,energy absorption capacity and ideality energy absorption efficiency were decreased with the increase in porosity.However,specimens with porosities of 60%,65%and 70%possessed similar total energy absorption capacity and ideality energy absorption efficiency.Meanwhile,experimental results showed that mean plateau strength of the foams was increased first and then decreased with increase in mean pore size.In addition,energy absorption capacities were almost the same in the initial stage,while the differences were obvious in the middle stage.From the engineering point of view,the specimens with mean pore size of 1.5 mm possess good combination of mean plateau strength and energy absorption characteristics under the present conditions. 展开更多
关键词 Metal foam Melt forming method Mg alloy foam compressive property
下载PDF
Effect of Porosity and Cell Size on the Dynamic Compressive Properties of Aluminum Alloy Foams 被引量:1
5
作者 YiFENG ShishengHU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期395-397,共3页
The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The e... The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimental results showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic, plateau and densification. The dynamic compressive strength of foams is affected not only by the relative density but also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size are more sensitive to the strain rate than foams with lower relative density or larger cell size. 展开更多
关键词 Aluminum alloy POROSITY Dynamic compressive property Foam
下载PDF
MICROSTRUCTURE AND COMPRESSIVE PROPERTIES OF NiAl-TiB_2 PARTICULATE COMPOSITES
6
作者 XING Zhanping GUO Jianting +1 位作者 HU Zhuangqi AN Geying 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1994年第1期45-48,共4页
Ni-50at.%A1 matrix composites containing 0 to 20v.% TiB2 particles have been successfully fabricated by HPES technique. The results show that the Vickers hardness at room temperature and the compressive yield strength... Ni-50at.%A1 matrix composites containing 0 to 20v.% TiB2 particles have been successfully fabricated by HPES technique. The results show that the Vickers hardness at room temperature and the compressive yield strength from room temperature to 1000℃ of the composites increase with increasing volume fraction of the strengthening phase. Especially, the yield strength of NiAl-20TiB2 was approximately twice as high as that of unreinforced NiAl. The ductility of the composites at room temperature is also superior to the monolithic NiAl. 展开更多
关键词 intermetallic matrix composite NIAL TIB2 MICROSTRUCTURE compressive property
下载PDF
Compressive characteristics of closed-cell aluminum foams with different percentages of Er element
7
作者 Wei-min Zhao Zan Zhang +3 位作者 Yong-ning Wang Xing-chuan Xia Hui Feng Jing Wang 《China Foundry》 SCIE 2016年第1期36-41,共6页
In the present study, closed-cell aluminum foams with different percentages of erbium(Er) element were successfully prepared. The distribution and existence form of erbium(Er) element and its effect on the compressive... In the present study, closed-cell aluminum foams with different percentages of erbium(Er) element were successfully prepared. The distribution and existence form of erbium(Er) element and its effect on the compressive properties of the foams were investigated. Results show that Er uniformly distributes in the cell walls in the forms of Al3 Er intermetallic compound and Al-Er solid solutions. Compared with commercially pure aluminum foam, Er-containing foams possess higher micro-hardness, compressive strength and energy absorption capacity due to solid solution strengthening and second phase strengthening effects. Additionally, the amount of Er element should be controlled in the range of 0.10 wt.%-0.50 wt.% in order to obtain a good combination of compressive strength and energy absorption properties. 展开更多
关键词 aluminum foams erbium element compressive property melt foaming method
下载PDF
MICROSTRUCTURE AND COMPRESSIVE PROPERTIES OF Ti_(50)Al_(48)Mn_2 AND Ti_(50) Al_(48)Cr_2
8
作者 CAO Mingzhou, XIE Yingxiu, XU ZengjiInstitute of Metal Research, Chinese Academy of Sciences,Shenyang. China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1994年第1期12-18,共7页
The microstructive and compressive properties of Ti50Al48,Mn2 and Ti50Al48Cr2 alloys are studied in this paper. Existence of x-x+y transformation in TiAl alloys is confirmed by metallographic examination, the transfor... The microstructive and compressive properties of Ti50Al48,Mn2 and Ti50Al48Cr2 alloys are studied in this paper. Existence of x-x+y transformation in TiAl alloys is confirmed by metallographic examination, the transformation temperatures of Ti5()Al48 Mn2 and Ti50Al48Cr2 are 1375 and 1373 C , respectively. After treating within x+y phase field, the microstructure of alloys consists of lamellar zones (I) and bulk rp. The volume ratio of L /rp increases with increasing solution treatment temperature. The third alloying elements of Mn and Cr distribute perferentially over x phase at solution treatment temperatures and result in that x2 and r lamellae become thicker. The yield strength of Ti50Al48Mn2 and Ti50Al48Cr2 alloys decreases and the compressibility increases with increasing rp volume fraction. 展开更多
关键词 Ti50Al48Mn2 Ti50Al48Cr2 compressive property
下载PDF
Dynamic Mechanical Property of Hybrid Fiber Reinforced Concrete(HFRC)
9
作者 任志刚 徐卫国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第4期783-788,共6页
The uniaxial compressive response of steel-polypropylene hybrid fiber reinforced concrete(HFRC) and steel fiber-reinforced concrete(SFRC) was analyzed under high strain rate loading with a 74 mm diameter split Hop... The uniaxial compressive response of steel-polypropylene hybrid fiber reinforced concrete(HFRC) and steel fiber-reinforced concrete(SFRC) was analyzed under high strain rate loading with a 74 mm diameter split Hopkinson pressure bar(SHPB).The experimental investigation focused on recorded data and resulted in distinguishing the strain rate that mobilized different ductility of steel-polypropylene hybrid fiber reinforced concrete(HFRC) and steel fiber-reinforced concrete(SFRC).64 specimens of HFRC and SFRC with higher static compressive strength were tested at the strain rates changing from 20 to 120 s-1.The static compressive strength and dynamic stress-strain curves of the two materials were obtained at 4 different strain rates and the failure stress,and peak strain and peak toughness were also analyzed.The results show that HFRC has quite good dynamic mechanical property and clear strain-rate effect,and the failure mechanism of HFRC and SFRC was also compared based on the specimens' failure modes in static and dynamic compressive tests. 展开更多
关键词 HFRC SFRC compression property SHPB strain rate
下载PDF
Influence of Density on Compressive Properties and Energy Absorption of Foamed Aluminum Alloy
10
作者 魏鹏 柳林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期225-228,共4页
The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The ... The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The results reveal that the compressive stress-strain curves follow the typical behavior of cellu- lar foams with three deformation stages. Under the same strain, the energy absorption capability decreases with the decrease of density. However, with increasing the strain, the energy absorption efficiency of foamed metal increases initially and then decreases. The lower the density, the longer the plateau region, within the range of high strain, the energy absorption efficiency is always high. 展开更多
关键词 foamed aluminum alloy compressive properties energy absorption DENSITY
下载PDF
Effect of 0.1 wt pct Dy Addition on Morphology and Compressive Behavior of Cast NiA1-28Cr-5.SMo-0.2Hf
11
作者 Qiang GAO Jianting GUO +2 位作者 Kaiwen HUAI Hutian LI Junshan ZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期179-182,共4页
Effect of 0.1 wt pct Dy addition on microstructure and compressive behavior of NiAl-28Cr-5.8Mo-0.2 Hf eutectic alloy was investigated. The results showed that remarkable lamellar refinement can be achieved with the ad... Effect of 0.1 wt pct Dy addition on microstructure and compressive behavior of NiAl-28Cr-5.8Mo-0.2 Hf eutectic alloy was investigated. The results showed that remarkable lamellar refinement can be achieved with the addition of 0.1 wt pct Dy. The Dy addition results in the decrease in Young's modulus of alloy and the.enhancement of the compressive strength and ductility of alloy at all testing temperatures. The lamellar refinement, the increased dislocation networks located at the interfaces of NiAl/Cr(Mo) and the strengthening of cell boundary are benefical to the improvement of compressive properties of the alloy. 展开更多
关键词 NiAl-28Cr-5.8Mo-0.2Hf DY Microstructure compressive properties
下载PDF
Evaluation of Self-Healing Efficiency of Microcapsule-Based Self-Healing Cementitious Composites Based on Acoustic Emission
12
作者 Wenfeng Hao Hao Hao +1 位作者 Humaira Kanwal Shiping Jiang 《Journal of Renewable Materials》 SCIE EI 2023年第4期1687-1697,共11页
Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-b... Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-based composites is one of the difficulties that limits the self-healing technology.This paper attempts to characterize the self-healing efficiency of microcapsule self-healing cement-based composites by acoustic emission(AE)parameters,which provides a reference for the evaluation of microcapsule self-healing technology.Firstly,a kind of self-healing microcapsules were prepared,and the microcapsules were added into the cement-based composites to prepare the compression samples.Then,the specimen with certain pre damage was obtained by compression test.Secondly,the damaged samples were divided into two groups.One group was directly used for compression tests to obtain the damage failure process.The other group was put into water for healing for 30 days,and then compression tests were carried out to study the influence of self-healing on the compression failure process.During the experiments,the AE signals were collected and the AE characteristics were extracted for the evaluation of self-healing efficiency.The results show that the compression pre damage test can trigger the microcapsule,and the compression strength of the self-healing sample is improved.The failure mechanism of microcapsule selfhealing cement-based composites can be revealed by the AE parameters during compression,and the self-healing efficiency can be quantitatively characterized by AE hits.The research results of this paper provide experimental reference and technical support for the mechanical property test and healing efficiency evaluation of microcapsule self-healing cement-based composites. 展开更多
关键词 Self-healing efficiency cementitious composites MICROCAPSULES acoustic emission compressive property
下载PDF
Effect of Weft Binding Structure on Compression Properties of Three-Dimensional Woven Spacer Fabrics and Composites 被引量:1
13
作者 刘生杰 江飞 +3 位作者 曾金金 邵慧奇 蒋金华 陈南梁 《Journal of Donghua University(English Edition)》 CAS 2023年第5期490-499,共10页
With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we... With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we designed three-dimensional woven spacer fabrics(3DWSFs)and 3DWSCs with the weft V-shape to improve the compression performance of traditional 3DWSFs.The effects of weft binding structures,V-pile densities,and V-shaped angle were investigated in this paper.It is found that the compression resistance of 3DWSFs with the weft V-shape is improved compared to that with the weft I-shape,the fabric height recovery rate is as high as 95.7%,and the average elastic recovery rate is 59.39%.When the interlayer pile yarn density is the same,the weft V-shaped and weft I-shaped 3DWSCs have similar flatwise pressure and edgewise pressure performance.The compression properties of the composite improve as the density of the V-pile yarns increases.The flatwise compression load decreases as the V-shaped angle decreases.When the V-shaped angle is 28°and 42°,the latitudinal V-shaped 3DWSCs perform exceptionally well in terms of anti-compression cushioning.The V-shaped weft binding method offers a novel approach to structural design of 3DWSCs. 展开更多
关键词 weft V-shaped binding three-dimensional woven spacer fabric(3DWSF) compression property pile yarn density V-shaped angle
下载PDF
Mechanical Properties and Energy Absorption of Integrated AlSi10Mg Shell Structures with BCC Lattice Infill
14
作者 Yingchun Bai Jiayu Gao +1 位作者 Chengxiang Huang Yue Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期159-171,共13页
Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure t... Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure the fabrica-tion of complex structures.Although the mechanical behaviors of lattice structures have been extensively studied,the corresponding mechanical performances of integrated-manufactured shell structures with lattice infills should be systematically investigated due to the coupling effect of the exterior shell and lattice infill.This study investigated the mechanical properties and energy absorption of AlSi10Mg shell structures with a body-centered cubic lattice infill fabricated by AM.Quasi-static compressive experiments and corresponding finite element analysis were conducted to investigate the mechanical behavior.In addition,two different finite element modeling methods were compared to determine the appropriate modeling strategy in terms of deformation behavior.A study of different parameters,including lattice diameters and shell thicknesses,was conducted to identify their effect on mechanical performance.The results demonstrate the mechanical advantages of shell-infill structures,in which the exterior shell strengthens the lattice infill by up to 2.3 times in terms of the effective Young’s modulus.Increasing the infill strut diameter can improve the specific energy absorption by up to 1.6 times. 展开更多
关键词 Shell-infill structure Body center cubic(BCC) Additive manufacturing Compression properties Energy absorption
下载PDF
Microstructure and properties of novel quinary multi-principal element alloys with refractory elements 被引量:3
15
作者 Na-na Guo Liang Wang +4 位作者 Yan-qing Su Liang-shun Luo Xin-zhong Li Jing-jie Guo Heng-zhi Fu 《China Foundry》 SCIE CAS 2015年第5期319-325,共7页
Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel ... Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel high temperature alloy. The five alloys exhibit different dendritic and interdendritic morphologies. The Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys formed disordered solid solution phases with body-centered cubic structure, and exhibited high compressive strength and good plasticity. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are composed with Laves phase(Hf Mo2) and disordered solid solution phases with body-centered cubic structure. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are harder and more brittle than the other three alloys due to the existence of hard and brittle Laves phases. At high temperatures, the strength decreases to below 300 MPa for the Ti Zr Hf VNb and Ti Zr Hf Mo V alloys. Solution strengthening is the primary strengthening mechanism of the Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys, and brittle Laves phase is the main cause for the low ductility of the Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys. 展开更多
关键词 high temperature alloys high-entropy alloy crystal structure and microstructure HARDNESS compressive property
下载PDF
Effect of boron on microstructure and mechanical properties of cast Ti-44Al6-Nb ingots 被引量:1
16
作者 Jian-chong Li Rui-run Chen +3 位作者 Zhi-kun Ma Xiao-yu Chen Hong-sheng Ding Jing-jie Guo 《China Foundry》 SCIE CAS 2015年第1期9-14,共6页
In order to improve the mechanical properties of Ti Al alloys, especially the ductility at room temperature, and to study the effect of boron(B) on Ti Al alloys, different contents(0, 0.1, 0.3, 0.6, 0.9, 1.2, at.%) of... In order to improve the mechanical properties of Ti Al alloys, especially the ductility at room temperature, and to study the effect of boron(B) on Ti Al alloys, different contents(0, 0.1, 0.3, 0.6, 0.9, 1.2, at.%) of B were added into Ti-44Al-6Nb alloys to prepare ingots. The surface quality, macrostructure, microstructure, compressive properties and fracture surface of the ingots were studied. The results show that B has little influence on the surface quality except that there are some dark spots on the surface when the content of B is 0.9%. B can refine the grains. The average grain size decrease from about 0.8 mm to 0.088 mm with increasing B content. Meanwhile, the grain morphology of these ingots changes from big equiaxed grains with lamellars to fine equiaxed grains. When the content of B is 1.2%, the primary Ti B2 phase forms in the liquid phase and increases the nucleation rate, leading to further refinement of the grains. The compressive testing results show that B can increase the strength and the ductility, the compressive strength and compressibility can reach 2,037.8 MPa and 26.7% from 1,156.2 MPa and 10.2% when the boron content is 0.6%, which is resulted from grain refining and grain boundary strengthening. It is found that the compressive strength and the compressibility are relatively stable when the B content is more than 0.3%. 展开更多
关键词 BORON TiAl alloy compressive property grain refining
下载PDF
YNi_5 PHASE AND ITS EFFECT UPON PROPERTIES OF Ni_3Al ALLOY
17
作者 WANG Shuhe GUO Jianting LI Hui SUN Chao TAN Minghui LAI Wanhui Institute of Metal Research,Academia Sinica,Shenyang,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第3期183-187,共5页
An additive of Y to Ni_3Al based alloy may form a phase YNi_5 which increases in amount with the increase of Y content.It was found that the YNi_5 phase in Ni_3Al alloy could remarkably make its grains finer and its g... An additive of Y to Ni_3Al based alloy may form a phase YNi_5 which increases in amount with the increase of Y content.It was found that the YNi_5 phase in Ni_3Al alloy could remarkably make its grains finer and its grain boundaries more crooked other than straight.If the Y con- tent≥0.1 wt-%,it occurs as solid solution state and is favorable to high temperature compressive properties and oxidation resistance of the alloy.While Y≥0.3 wt-%,the forma- tion of YNi_5 is predominant in the shape of irregular strips inside Ni_3Al grains and along their grain boundaries.This seems to be quite harmful to high temperature strength,ductility and oxidation resistance of the alloy. 展开更多
关键词 Ni_3Al YNi_5 phase Y compressive property oxidation resistance
下载PDF
Effects of small amount Ta on the characteristics of the Zr-Al-Ni-Cu-Ta bulk metallic glass
18
作者 HongchaoKou XidongHui +3 位作者 XiongjunLiu XipingSong GuoliangChen KefuYao 《Journal of University of Science and Technology Beijing》 CSCD 2005年第3期257-261,共5页
The effects of Ta on the characteristics of the Zr-base BMG (bulk metallic glass) were investigated. Zr55Al10Ni5Cu30-xTax (x=1, 2,4) bulk metallic glasses (BMGs) with 3.5 mm diameter and 70 mm length were successfully... The effects of Ta on the characteristics of the Zr-base BMG (bulk metallic glass) were investigated. Zr55Al10Ni5Cu30-xTax (x=1, 2,4) bulk metallic glasses (BMGs) with 3.5 mm diameter and 70 mm length were successfully prepared by using combined jet and copper mold casting. A small amount of Ta addition does not change the glass transition temperature, crystallization temperature, and supercooled liquid region obviously, but Ta promotes composition separation and two-stage crystallization. The stable crystalline phases include Zr2Ni, CuZr2, Al2Zr3 intermetallic compounds and Ta-rich solid solution after annealing the Zr-Al-Ni-Cu-Ta alloys at 753 K. Zr55Al10Ni5Cu30-xTax (x=1,2,4) bulk glassy alloys exhibit a better compressive strength. The stress-strain curve shows a zigzag feature, and the fracture surface shows intersecting of shear bands. It may correlate with the inhomogeneous feature of amorphous structure. 展开更多
关键词 Zr-Al-Ni-Cu-Ta alloy bulk metallic glass (BMG) microstructure compressive property
下载PDF
Zirconium-Induced Softening in Hyperstoichiometric Ni_3Al 被引量:2
19
作者 Yufang LI, Jianting GUO and Hengqiang YE Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期207-210,共4页
The room temperature compressive properties and microhardness of Ni3AI alloys doped with Zr were studied. For the hypostoichiometric Ni3AI alloys, the compressive strength and microhardness increased with an increase ... The room temperature compressive properties and microhardness of Ni3AI alloys doped with Zr were studied. For the hypostoichiometric Ni3AI alloys, the compressive strength and microhardness increased with an increase in Zr content, while softening behavior induced by doping with a certain amount of Zr was observed in hyperstoichiometric Ni3AI alloy. Possible mechanisms for the softening effect were suggested. 展开更多
关键词 NI3AL compressive properties MICROHARDNESS SOFTENING
下载PDF
Selection of regression models for predicting strength and deformability properties of rocks using GA 被引量:9
20
作者 Manouchehrian Amin Sharifzadeh Mostafa +1 位作者 Hamidzadeh Moghadam Rasoul Nouri Tohid 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期492-498,共7页
Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models... Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy. 展开更多
关键词 Regression models Genetic algorithms Heuristics Uniaxial compressive strength Modulus of elasticity Rock index property
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部