A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression...A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline.展开更多
In order to investigate the influence of compressive strain on indium incorporation in In Al N and In Ga N ternary nitrides, In Al N/Ga N heterostructures and In Ga N films were grown by metal–organic chemical vapor ...In order to investigate the influence of compressive strain on indium incorporation in In Al N and In Ga N ternary nitrides, In Al N/Ga N heterostructures and In Ga N films were grown by metal–organic chemical vapor deposition. For the heterostructures, different compressive strains are produced by Ga N buffer layers grown on unpatterned and patterned sapphire substrates thanks to the distinct growth mode; while for the In Ga N films, compressive strains are changed by employing Al Ga N templates with different aluminum compositions. By various characterization methods, we find that the compressive strain will hamper the indium incorporation in both In Al N and In Ga N. Furthermore, compressive strain is conducive to suppress the non-uniform distribution of indium in In Ga N ternary alloys.展开更多
The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER...The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field.展开更多
A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and d...A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and deformation for brittle rock subjected to compressive loads. The closed-form explicit expression for the complete stress-strain relation of rock containing microcracks subjected to compressive loads was obtained. It is showed that the complete stress-strain relation includes linear elasticity,nonlinear hardening,rapid stress drop and strain softening.The behavior of rapid stress drop and strain softening is due to localization of deformation and damage. Theoretical predictions have shown to be consistent with the experimental results.展开更多
Grain refinement is one of the effective methods to develop new generation low carbon microalloyed steels possessing excellent combination of mechanical properties. The microstructural evolution and ferrite grain refi...Grain refinement is one of the effective methods to develop new generation low carbon microalloyed steels possessing excellent combination of mechanical properties. The microstructural evolution and ferrite grain refinement at the deformation temperature of 865℃, above Ar3, with different strain rates were investigated using single pass isothermal hot compression experiments for a low carbon Nb-Ti microalloyed steel. The physical processes that occurred during deformation were discussed by observing the optical microstructure and analyzing the true stress-true strain responses. At strain rates of 0.001 and 0.01s^-1, there is no evidence of work hardening behavior during hot deformation and strain-induced transformation (SIT) leads to dynamic flow softening in flow curves. Optical microscopy observation shows that ultrafine and equiaxed ferrite with grain sizes of 2μm can be obtained by applying deformation with strain rate of 0.1 s^-1 due to SIT just after deformation. Furthermore, increasing the strain rate from 0.001 to 0.1 s^-1 reduces both the grain size of the equiaxed ferrite and the amount of deformed ferrite.展开更多
Accurate prediction of compressive strength of rocks relies on the rate-dependent behaviors of rocks, and correlation among the geometrical, physical, and mechanical properties of rocks. However, these properties may ...Accurate prediction of compressive strength of rocks relies on the rate-dependent behaviors of rocks, and correlation among the geometrical, physical, and mechanical properties of rocks. However, these properties may not be easy to control in laboratory experiments, particularly in dynamic compression experiments. By training three machine learning models based on the support vector machine(SVM), backpropagation neural network(BPNN), and random forest(RF) algorithms, we isolated different input parameters, such as static compressive strength, P-wave velocity, specimen dimension, grain size, bulk density, and strain rate, to identify their importance in the strength prediction. Our results demonstrated that the RF algorithm shows a better performance than the other two algorithms. The strain rate is a key input parameter influencing the performance of these models, while the others(e.g. static compressive strength and P-wave velocity) are less important as their roles can be compensated by alternative parameters. The results also revealed that the effect of specimen dimension on the rock strength can be overshadowed at high strain rates, while the effect on the dynamic increase factor(i.e. the ratio of dynamic to static compressive strength) becomes significant. The dynamic increase factors for different specimen dimensions bifurcate when the strain rate reaches a relatively high value, a clue to improve our understanding of the transitional behaviors of rocks from low to high strain rates.展开更多
Shale,as a kind of brittle rock,often exhibits different nonlinear stress-strain behavior,failure and timedependent behavior under different strain rates.To capture these features,this work conducted triaxial compress...Shale,as a kind of brittle rock,often exhibits different nonlinear stress-strain behavior,failure and timedependent behavior under different strain rates.To capture these features,this work conducted triaxial compression tests under axial strain rates ranging from 5×10-6 s-1 to 1×10-3 s-1.The results show that both elastic modulus and peak strength have a positive correlation relationship with strain rates.These strain rate-dependent mechanical behaviors of shale are originated from damage growth,which is described by a damage parameter.When axial strain is the same,the damage parameter is positively correlated with strain rate.When strain rate is the same,with an increase of axial strain,the damage parameter decreases firstly from an initial value(about 0.1 to 0.2),soon reaches its minimum(about 0.1),and then increases to an asymptotic value of 0.8.Based on the experimental results,taking yield stress as the cut-off point and considering damage variable evolution,a new measure of micro-mechanical strength is proposed.Based on the Lemaitre’s equivalent strain assumption and the new measure of micro-mechanical strength,a statistical strain-rate dependent damage constitutive model for shale that couples physically meaningful model parameters was established.Numerical back-calculations of these triaxial compression tests results demonstrate the ability of the model to reproduce the primary features of the strain rate dependent mechanical behavior of shale.展开更多
Isothermal compression of the Ti-6Al-4V alloy at the deformation temperatures of 950 and 980℃,height reductions of 30% and 60%,and strain rates of 0.001,0.010,0.100 and 1.000 s-1 was conducted,wherein the variations ...Isothermal compression of the Ti-6Al-4V alloy at the deformation temperatures of 950 and 980℃,height reductions of 30% and 60%,and strain rates of 0.001,0.010,0.100 and 1.000 s-1 was conducted,wherein the variations of microstructure with strain rate were investigated.The experimental results showed that the variation of the microstructure with the strain rate under one condition was significantly different from that under another condition,which meaned that the interaction between the processing parameters was great.The optimization of the strain rate under one condition was not suitable for another condition.Therefore,selecting the forging equipment and optimizing the strain rate should be based on simultaneously considering the deformation temperature and height reduction.展开更多
The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results i...The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.展开更多
Strained Si is recognized as a necessary technology booster for modem integrated circuit technology. However, the thermal oxidation behaviors of strained Si substrates are not well understood yet despite their importa...Strained Si is recognized as a necessary technology booster for modem integrated circuit technology. However, the thermal oxidation behaviors of strained Si substrates are not well understood yet despite their importance. In this study, we for the first time experimentally find that all types of strained Si substrates (uniaxial tensile, uniaxial compressive, biaxial tensile, and biaxial compressive) show smaller thermal oxidation rates than an unstrained Si substrate. The possible mechanisms for these retarded thermal oxidation rates in strained Si substrates are also discussed.展开更多
To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at dif...To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.展开更多
The dynamic response of vitreous carbon to uniaxial strain loading has been investigated by means of the plate impact experiments. The two x cut shorted quartz gauges assembled with impactor and target were used ...The dynamic response of vitreous carbon to uniaxial strain loading has been investigated by means of the plate impact experiments. The two x cut shorted quartz gauges assembled with impactor and target were used to obtain the wave speeds in material and the stress histories at the sample gauge interface. The wave speed and stress histories were analyzed to determine the peak state in the sample. For compressive stress up to 4 0 GPa, the wave profiles were observed to be simple and steady, the uniaxial strain response is essentially nonlinear elastic, and no inelastic deformation has been found. All the experiment results indicate that the Hugoniot curve of vitreous carbon is concave downward just like that of fused silicon. There is no shock wave but the compressed wave propagating in the impacted samples.展开更多
The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of ...The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application.展开更多
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ...High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.展开更多
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic ...In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.展开更多
The construction of a high-speed railway(HSR) in Southwest China is being hindered by a severe shortage of high-quality subgrade materials. However, red mudstone is widely distributed in the Sichuan Basin of China. Th...The construction of a high-speed railway(HSR) in Southwest China is being hindered by a severe shortage of high-quality subgrade materials. However, red mudstone is widely distributed in the Sichuan Basin of China. The ability to use weathered red mudstone(WRM) to fill subgrade beds by controlling its critical stress and cumulative strain would enable substantial savings in project investments and mitigate damage to the ecological environment. To better understand the dynamic behaviour of WRM, both monotonic and cyclic triaxial tests were performed. The evolution of the cumulative strain vs. increased loading cycles was measured. The influences of confining pressure and loading cycles on the dynamic modulus, damping ratio, critical cyclic stress ratio(CSR), and dynamic stress level(DSL) were investigated. The relationship between the CSR and loading cycles under different failure strain criteria(0.1%-1.0%) was analysed. The prediction model of cumulative strain was also evaluated. The results indicated that the shear strength of WRM sufficiently meets the static strength requirements of subgrade. The critical dynamic stress of WRM can thus satisfy the dynamic stress-bearing requirement of the HSR subgrade. The critical CSR decreases and displays a power function with increasing confining pressure. As the confining pressure increases, the DSL remains relatively stable, ranging between 0.153 and 0.163. Furthermore, the relationship between the dynamic strength and loading cycles required to cause failure was established. Finally, a newly developed model for determining cumulative strain was established. A prediction exercise showed that the model is in good agreement with the experimental data.展开更多
The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinso...The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period.展开更多
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope...For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.展开更多
Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Here...Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1) at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1) and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst.展开更多
Unconfined uniaxial compressive tests were performed to study the influence of cryostructure on frozen clay's behavior,such as strain-stress,compressive strength,and failure characteristics,at temperatures varying...Unconfined uniaxial compressive tests were performed to study the influence of cryostructure on frozen clay's behavior,such as strain-stress,compressive strength,and failure characteristics,at temperatures varying from-10 to-2°C and strain rates varying from 1.0×10-5to 1.0×10-3s-1.Artificial samples were prepared of three types:(1)integral structure,(2)laminar structure,and(3)reticular structure.The impact of temperature,strain rate,and cryostructure on the mechanical properties is discussed.In general,frozen clay with various cryostructures shows strain-softening behavior in the range of testing temperatures and strain rates.For frozen clay of different cryostructures,the ultimate compressive strength increases with increasing strain rate and decreasing temperature.Under the same testing conditions,the ultimate compressive strengths from high to low are in integral samples,laminar samples,and reticular samples.Failure strain of frozen clay generally increases with increasing temperature and does not indicate any correlation with cryostructure or strain rate.The failure mode of integral and reticular samples was shear failure,while laminar samples showed tensile failure.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.52171285)。
文摘A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61404099 and 61306017)the Fundamental Research Funds for the Central Universities,China(Grant No.JB141101)
文摘In order to investigate the influence of compressive strain on indium incorporation in In Al N and In Ga N ternary nitrides, In Al N/Ga N heterostructures and In Ga N films were grown by metal–organic chemical vapor deposition. For the heterostructures, different compressive strains are produced by Ga N buffer layers grown on unpatterned and patterned sapphire substrates thanks to the distinct growth mode; while for the In Ga N films, compressive strains are changed by employing Al Ga N templates with different aluminum compositions. By various characterization methods, we find that the compressive strain will hamper the indium incorporation in both In Al N and In Ga N. Furthermore, compressive strain is conducive to suppress the non-uniform distribution of indium in In Ga N ternary alloys.
基金financially supported by the National Natural Science Foundation of China(52071072)the Fundamental Research Funds for the Central Universities(2023GFZD03)+4 种基金the Natural Science Foundation-Steel,the Iron Foundation of Hebei Province(E2022501030)the Key Research and Development Plan of Qinhuangdao City(202302B013)the Liaoning Applied Basic Research Program(2023JH2/101300011)the Basic scientific research project of Liaoning Province Department of Education(LJKZZ20220024)the Shenyang Science and Technology Project(23-407-3-13)。
文摘The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field.
文摘A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and deformation for brittle rock subjected to compressive loads. The closed-form explicit expression for the complete stress-strain relation of rock containing microcracks subjected to compressive loads was obtained. It is showed that the complete stress-strain relation includes linear elasticity,nonlinear hardening,rapid stress drop and strain softening.The behavior of rapid stress drop and strain softening is due to localization of deformation and damage. Theoretical predictions have shown to be consistent with the experimental results.
文摘Grain refinement is one of the effective methods to develop new generation low carbon microalloyed steels possessing excellent combination of mechanical properties. The microstructural evolution and ferrite grain refinement at the deformation temperature of 865℃, above Ar3, with different strain rates were investigated using single pass isothermal hot compression experiments for a low carbon Nb-Ti microalloyed steel. The physical processes that occurred during deformation were discussed by observing the optical microstructure and analyzing the true stress-true strain responses. At strain rates of 0.001 and 0.01s^-1, there is no evidence of work hardening behavior during hot deformation and strain-induced transformation (SIT) leads to dynamic flow softening in flow curves. Optical microscopy observation shows that ultrafine and equiaxed ferrite with grain sizes of 2μm can be obtained by applying deformation with strain rate of 0.1 s^-1 due to SIT just after deformation. Furthermore, increasing the strain rate from 0.001 to 0.1 s^-1 reduces both the grain size of the equiaxed ferrite and the amount of deformed ferrite.
基金supported by National Research Foundation,Singapore under its Virtual Singapore R&D Programme (Award No.NRF2019VSG-GMS-001)。
文摘Accurate prediction of compressive strength of rocks relies on the rate-dependent behaviors of rocks, and correlation among the geometrical, physical, and mechanical properties of rocks. However, these properties may not be easy to control in laboratory experiments, particularly in dynamic compression experiments. By training three machine learning models based on the support vector machine(SVM), backpropagation neural network(BPNN), and random forest(RF) algorithms, we isolated different input parameters, such as static compressive strength, P-wave velocity, specimen dimension, grain size, bulk density, and strain rate, to identify their importance in the strength prediction. Our results demonstrated that the RF algorithm shows a better performance than the other two algorithms. The strain rate is a key input parameter influencing the performance of these models, while the others(e.g. static compressive strength and P-wave velocity) are less important as their roles can be compensated by alternative parameters. The results also revealed that the effect of specimen dimension on the rock strength can be overshadowed at high strain rates, while the effect on the dynamic increase factor(i.e. the ratio of dynamic to static compressive strength) becomes significant. The dynamic increase factors for different specimen dimensions bifurcate when the strain rate reaches a relatively high value, a clue to improve our understanding of the transitional behaviors of rocks from low to high strain rates.
基金financially supported by the China Scholarship Council projectthe National Natural Science Foundation of China(grants No.51574218,41688103,51678171,51608139,U1704243 and 51709113)+4 种基金the Guangdong Science and Technology Department(grant No.2015B020238014)the Guangzhou Science Technology and Innovation Commission(grant No.201604016021)the High-level Talent Research Launch Project(grant No.950318066)the Shandong Provincial Natural Science Foundation,China(grants No.ZR2017PD001 and ZR2018BD013)the Science Foundation of Chinese Academy of Geological Sciences(grant No.JYYWF20181201)
文摘Shale,as a kind of brittle rock,often exhibits different nonlinear stress-strain behavior,failure and timedependent behavior under different strain rates.To capture these features,this work conducted triaxial compression tests under axial strain rates ranging from 5×10-6 s-1 to 1×10-3 s-1.The results show that both elastic modulus and peak strength have a positive correlation relationship with strain rates.These strain rate-dependent mechanical behaviors of shale are originated from damage growth,which is described by a damage parameter.When axial strain is the same,the damage parameter is positively correlated with strain rate.When strain rate is the same,with an increase of axial strain,the damage parameter decreases firstly from an initial value(about 0.1 to 0.2),soon reaches its minimum(about 0.1),and then increases to an asymptotic value of 0.8.Based on the experimental results,taking yield stress as the cut-off point and considering damage variable evolution,a new measure of micro-mechanical strength is proposed.Based on the Lemaitre’s equivalent strain assumption and the new measure of micro-mechanical strength,a statistical strain-rate dependent damage constitutive model for shale that couples physically meaningful model parameters was established.Numerical back-calculations of these triaxial compression tests results demonstrate the ability of the model to reproduce the primary features of the strain rate dependent mechanical behavior of shale.
基金financially supported by the National Natural Science Foundation of China (No.50975234)
文摘Isothermal compression of the Ti-6Al-4V alloy at the deformation temperatures of 950 and 980℃,height reductions of 30% and 60%,and strain rates of 0.001,0.010,0.100 and 1.000 s-1 was conducted,wherein the variations of microstructure with strain rate were investigated.The experimental results showed that the variation of the microstructure with the strain rate under one condition was significantly different from that under another condition,which meaned that the interaction between the processing parameters was great.The optimization of the strain rate under one condition was not suitable for another condition.Therefore,selecting the forging equipment and optimizing the strain rate should be based on simultaneously considering the deformation temperature and height reduction.
基金Supported by the Fund of Hunan Provincial Construction Department(No.06-468-8)
文摘The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.
基金supported by the National Key Basic Research Project of China(Grant No.2011CBA00607)the National Natural Science Foundation of China(Grant Nos.61106089 and 61376097)the Program B for Outstanding Ph.D.Candidate of Nanjing University,China(Grant No.201301B005)
文摘Strained Si is recognized as a necessary technology booster for modem integrated circuit technology. However, the thermal oxidation behaviors of strained Si substrates are not well understood yet despite their importance. In this study, we for the first time experimentally find that all types of strained Si substrates (uniaxial tensile, uniaxial compressive, biaxial tensile, and biaxial compressive) show smaller thermal oxidation rates than an unstrained Si substrate. The possible mechanisms for these retarded thermal oxidation rates in strained Si substrates are also discussed.
基金Projects(51231002,51271054,51571058,50671023)supported by the National Natural Science Foundation of China
文摘To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.
文摘The dynamic response of vitreous carbon to uniaxial strain loading has been investigated by means of the plate impact experiments. The two x cut shorted quartz gauges assembled with impactor and target were used to obtain the wave speeds in material and the stress histories at the sample gauge interface. The wave speed and stress histories were analyzed to determine the peak state in the sample. For compressive stress up to 4 0 GPa, the wave profiles were observed to be simple and steady, the uniaxial strain response is essentially nonlinear elastic, and no inelastic deformation has been found. All the experiment results indicate that the Hugoniot curve of vitreous carbon is concave downward just like that of fused silicon. There is no shock wave but the compressed wave propagating in the impacted samples.
基金supported by grants funded by Department of Mechanical Engineering,Faculty of Engineering,Chiang Mai University and the Graduate School of Chiang Mai University.
文摘The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application.
基金supported by the National Natural Science Foundation of China(Nos.51839009 and 52027814)the Natural Science Foundation of Hubei Province(No.2023AFB589).
文摘High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.
基金supported by the National Basic Research 973 Program of China (Grant 2014CB046905)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars (Grant BK20150005)+1 种基金the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (Grant 2014XT03)the innovation research project for academic graduate of Jiangsu Province (Grant KYLX16_0536)
文摘In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.
基金financially supported by the CAS“Light of West China”Program(Grant No.Y6R2240240)the National Natural Science Foundation of China(Grant No.41761144077)the Sichuan science and technology plan project(Grant No.2017JY0251)
文摘The construction of a high-speed railway(HSR) in Southwest China is being hindered by a severe shortage of high-quality subgrade materials. However, red mudstone is widely distributed in the Sichuan Basin of China. The ability to use weathered red mudstone(WRM) to fill subgrade beds by controlling its critical stress and cumulative strain would enable substantial savings in project investments and mitigate damage to the ecological environment. To better understand the dynamic behaviour of WRM, both monotonic and cyclic triaxial tests were performed. The evolution of the cumulative strain vs. increased loading cycles was measured. The influences of confining pressure and loading cycles on the dynamic modulus, damping ratio, critical cyclic stress ratio(CSR), and dynamic stress level(DSL) were investigated. The relationship between the CSR and loading cycles under different failure strain criteria(0.1%-1.0%) was analysed. The prediction model of cumulative strain was also evaluated. The results indicated that the shear strength of WRM sufficiently meets the static strength requirements of subgrade. The critical dynamic stress of WRM can thus satisfy the dynamic stress-bearing requirement of the HSR subgrade. The critical CSR decreases and displays a power function with increasing confining pressure. As the confining pressure increases, the DSL remains relatively stable, ranging between 0.153 and 0.163. Furthermore, the relationship between the dynamic strength and loading cycles required to cause failure was established. Finally, a newly developed model for determining cumulative strain was established. A prediction exercise showed that the model is in good agreement with the experimental data.
基金supported by the National Key R&D Program of China(No.2017YFC0602902)the National Natural Scienceof China(Nos.41807259 and 51874350)+2 种基金the Fundamental Research Funds for the Central Universities of Central South University(No.2016zztx096)The support provided by the China Scholarship Council(CSC)during the visit of the first author toécole Polytechnique de Montréal(Student ID:201706370039)the materials supply by Fan Kou lead-zinc mine of Shenzhen Zhongjin Lingnan Non-ferrous metal Company Limited。
文摘The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period.
基金The authors would like to acknowledge the financial support from the National Key Basic Research Program(973 Program),Project(2013CB632205).
文摘For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.
基金the financial support provided by the National Natural Science Foundation of China(22075290,21972068,52164028)the Beijing Natural Science Foundation(Z200012)+3 种基金the State Key Laboratory of Multiphase Complex Systemsthe Institute of Process Engineeringthe Chinese Academy of Sciences(MPCS-2021-A-05)the Nanjing IPE Institute of Green Manufacturing Industry(E0010725).
文摘Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1) at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1) and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst.
基金supported by the Natural Science Foundation of China (41171065 and 51323004)
文摘Unconfined uniaxial compressive tests were performed to study the influence of cryostructure on frozen clay's behavior,such as strain-stress,compressive strength,and failure characteristics,at temperatures varying from-10 to-2°C and strain rates varying from 1.0×10-5to 1.0×10-3s-1.Artificial samples were prepared of three types:(1)integral structure,(2)laminar structure,and(3)reticular structure.The impact of temperature,strain rate,and cryostructure on the mechanical properties is discussed.In general,frozen clay with various cryostructures shows strain-softening behavior in the range of testing temperatures and strain rates.For frozen clay of different cryostructures,the ultimate compressive strength increases with increasing strain rate and decreasing temperature.Under the same testing conditions,the ultimate compressive strengths from high to low are in integral samples,laminar samples,and reticular samples.Failure strain of frozen clay generally increases with increasing temperature and does not indicate any correlation with cryostructure or strain rate.The failure mode of integral and reticular samples was shear failure,while laminar samples showed tensile failure.