期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Uniaxial Compressive Properties of Ultra High Toughness Cementitious Composite 被引量:3
1
作者 蔡向荣 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期762-769,共8页
Uniaxial compression tests were conducted to characterize the main compressive performance of ultra high toughness cementitious composite (UHTCC) in terms of strength and toughness and to obtain its stress-strain re... Uniaxial compression tests were conducted to characterize the main compressive performance of ultra high toughness cementitious composite (UHTCC) in terms of strength and toughness and to obtain its stress-strain relationships. The compressive strength investigated ranges from 30 MPa to 60 MPa. Complete stress-strain curves were directly obtained, and the strength indexes, including uniaxial compressive strength, compressive strain at peak stress, elastic modulus and Poisson's ratio, were calculated. The comparisons between UHTCC and matrix were also carried out to understand the fiber effect on the compressive strength indexes. Three dimensionless toughness indexes were calculated, which either represent its relative improvement in energy absorption capacity because of fiber addition or provide an indication of its behavior relative to a rigid-plastic material. Moreover, two new toughness indexes, which were named as post-crack deformation energy and equivalent compressive strength, were proposed and calculated with the aim at linking up the compressive toughness of UHTCC with the existing design concept of concrete. The failure mode was also given. The study production provides material characteristics for the practical engineering application of UHTCC. 展开更多
关键词 ultra high toughness cementitious composite compressive strength compressive toughness fiber reinforcement
下载PDF
Porosity Effects on Mechanical Properties of 3D Random Fibrous Materials at Elevated Temperatures 被引量:2
2
作者 Datao Li Wenshan Yu +2 位作者 Wei Xia Qinzhi Fang Shengping Shen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第1期14-30,共17页
In this study,we prepare the specimens of three-dimensional random fibrous(3D RF)material along its through-the-thickness(TTT)and in-plane(IP)directions.The experimental tests of tensile and compressive properties as ... In this study,we prepare the specimens of three-dimensional random fibrous(3D RF)material along its through-the-thickness(TTT)and in-plane(IP)directions.The experimental tests of tensile and compressive properties as well as fracture toughness of 3D RF material are performed at elevated temperatures.Then,the porosity(83%,87%and 89%)and temperature dependence of the tensile and compressive strength,elastic modulus,fracture toughness and fracture surface energy of the 3D RF materials for both the TTT and IP directions are analyzed.From the results of the tensile strength and elastic modulus versus material porosities at various temperatures,we find that tensile strength and elastic modulus for the TTT direction are more sensitive to the porosity,but not for the IP direction.Fracture toughness increases firstly and then decreases at a certain critical temperature.Such critical temperature is found to be the lowest for the porosity of 83%.On the other hand,at below 1073 K,the temperature-dependent fracture surface energies with three porosities for the TTT direction show similar variation trends. 展开更多
关键词 Elevated temperature Tensile strength compressive strength.Fracture toughness(FT) Fracture surface energy(FSE)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部