Using an inviscid model with inlet total pressure gradient and a J. D. Denton scheme, this paper for the first time numerically solves the 3D flow field of compressor casing treatment, and also explores some boundary ...Using an inviscid model with inlet total pressure gradient and a J. D. Denton scheme, this paper for the first time numerically solves the 3D flow field of compressor casing treatment, and also explores some boundary singularities and numerical stability. Agreement is attained in qualitative explanations of some, casing treatment test results and its mechanism.展开更多
Parametric study of tip injection was implemented experimentally on a subsonic axial flow compressor to understand the underlying flow mechanisms of stability improvement of the compressor with discrete tip injection....Parametric study of tip injection was implemented experimentally on a subsonic axial flow compressor to understand the underlying flow mechanisms of stability improvement of the compressor with discrete tip injection.Injector throat height varied from 2 to 6 times the height of rotor tip clearance,and circumferential coverage percentage ranged from 8.3% to 25% of the annulus.Static pressure fluctuations over the rotor tip were measured with fast-response pressure transducers.Whole-passage time-accurate simulations were also carried out to help us understand the flow details.The combinations of tip injection with traditional casing treatments were experimentally studied to generate an engineering-acceptable method of compressor stall control.The results indicate that the maximum stability improvement is achieved when injectors are choked despite their different sizes.The effect of circumferential coverage percentage on compressor stability depends on the value of injector throat height for un-choked injectors,and vice versa.Tip blockage in the blade passage is greatly reduced by the choked injectors,which is the primary reason for stability enhancement.The accomplishment of blockage diminishment is maintained in the circumferential direction with the unsteady effect of tip injection,which manifests as a hysteresis between the recovery of tip blockage and the recovery of tip leakage vortex.The unsteady effect is primarily responsible for the effectiveness of tip injection with a partial circumferential coverage.Tip injection cannot enhance the stability of the rotor with axial slots significantly,but it can improve the stability of the rotor with circumferential grooves further.The combined structure of tip injection with circumferential grooves is an alternative for engineering application.展开更多
The paper investigates the effect of a single circumferential groove casing treatment(CGCT) on a transonic compressor rotor numerically.In particular,the effect of the groove at different axial locations on the flow f...The paper investigates the effect of a single circumferential groove casing treatment(CGCT) on a transonic compressor rotor numerically.In particular,the effect of the groove at different axial locations on the flow field is studied in detail and stall margin improvement is also discussed.The present results show that the groove close to the leading edge plays a crucial role in stabilizing the near stall flow structures and,hence,improves the stall margin.The groove at the mid-chord-section of the blade can help exchange and transfer momentums between different directions,and suppress the flow unsteadiness,leading to increased efficiency in rotor performance and extended operation range.The groove located near the blade trailing edge has limited effects on stall margin improvement and may cause additional penalty in efficiency.Through comparison with the recent work on CGCT,some common flow physics can be observed.展开更多
文摘Using an inviscid model with inlet total pressure gradient and a J. D. Denton scheme, this paper for the first time numerically solves the 3D flow field of compressor casing treatment, and also explores some boundary singularities and numerical stability. Agreement is attained in qualitative explanations of some, casing treatment test results and its mechanism.
基金the support of the National Natural Science Foundation of China(Nos.51576162 and51236006)The Doctorate Foundation of Northwestern Polytechnical University(No.CX201422)
文摘Parametric study of tip injection was implemented experimentally on a subsonic axial flow compressor to understand the underlying flow mechanisms of stability improvement of the compressor with discrete tip injection.Injector throat height varied from 2 to 6 times the height of rotor tip clearance,and circumferential coverage percentage ranged from 8.3% to 25% of the annulus.Static pressure fluctuations over the rotor tip were measured with fast-response pressure transducers.Whole-passage time-accurate simulations were also carried out to help us understand the flow details.The combinations of tip injection with traditional casing treatments were experimentally studied to generate an engineering-acceptable method of compressor stall control.The results indicate that the maximum stability improvement is achieved when injectors are choked despite their different sizes.The effect of circumferential coverage percentage on compressor stability depends on the value of injector throat height for un-choked injectors,and vice versa.Tip blockage in the blade passage is greatly reduced by the choked injectors,which is the primary reason for stability enhancement.The accomplishment of blockage diminishment is maintained in the circumferential direction with the unsteady effect of tip injection,which manifests as a hysteresis between the recovery of tip blockage and the recovery of tip leakage vortex.The unsteady effect is primarily responsible for the effectiveness of tip injection with a partial circumferential coverage.Tip injection cannot enhance the stability of the rotor with axial slots significantly,but it can improve the stability of the rotor with circumferential grooves further.The combined structure of tip injection with circumferential grooves is an alternative for engineering application.
基金supported by the GE Aviation under its University Strategic Alliance(USA) programsupported by the National Natural Science Foundation of China(Grant Nos.10932005 and 11272183)
文摘The paper investigates the effect of a single circumferential groove casing treatment(CGCT) on a transonic compressor rotor numerically.In particular,the effect of the groove at different axial locations on the flow field is studied in detail and stall margin improvement is also discussed.The present results show that the groove close to the leading edge plays a crucial role in stabilizing the near stall flow structures and,hence,improves the stall margin.The groove at the mid-chord-section of the blade can help exchange and transfer momentums between different directions,and suppress the flow unsteadiness,leading to increased efficiency in rotor performance and extended operation range.The groove located near the blade trailing edge has limited effects on stall margin improvement and may cause additional penalty in efficiency.Through comparison with the recent work on CGCT,some common flow physics can be observed.