期刊文献+
共找到563篇文章
< 1 2 29 >
每页显示 20 50 100
Study on a High Precision Inter-stage Flow Field Test System for Axial Compressors
1
作者 Yi-tong Liu Wu-qi Gong +1 位作者 Ya Li Yi-tian Wang 《风机技术》 2024年第6期85-96,共12页
The accurate parameters measurement of the flow field between the stages for axial compressors is a significant demand.This paper proposes an axial compressor inter-stage flow field high-precision test system,which ma... The accurate parameters measurement of the flow field between the stages for axial compressors is a significant demand.This paper proposes an axial compressor inter-stage flow field high-precision test system,which mainly consists of a probe motion scanning mechanism,fully automated test control software,and data processing methods.Iterative correction is applied to the original readings obtained from the scanning tests to enhance testing accuracy.Using this test system,detailed tests are conducted on a 1.5-stage subsonic axial compressor under different operating conditions.The test results effectively captured the impact of surface roughness and tip clearance variations on compressor performance.The distribution characteristics of parameters measured in inter-stage sections can characterize the effects of blade wake area and changes in aerodynamic performance at different blade heights.The developed test system can be extended to multi-stage compressors. 展开更多
关键词 Axial Compressor Test Method CALIBRATION Pneumatic Probe Flow Field
下载PDF
Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors 被引量:4
2
作者 GUO Xiumei WANG Shumao LIU Xiaopeng LI Zhinian LU Fang MI Jing HAO Lei JIANG Lijun 《Rare Metals》 SCIE EI CAS CSCD 2011年第3期227-231,共5页
Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen stora... Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen storage properties were investigated. The alloy pair Ti0.9Zr0.1Mn1.4- Cr0.35V0.2Fe0.05/TiCr1.55Mn0.2Fe0.2 was optimized based on the comprehensive performance of the studied alloys. The product hydrogen with a pressure of 100 MPa could be produced from 4 MPa feed gas when hot oil was used as a heat reservoir. 展开更多
关键词 hydrogen storage alloys hydrides Laves phase compressors HYDROGEN
下载PDF
Computer-Aided Solution to the Vibrational Effect of Instabilities in Gas Turbine Compressors 被引量:1
3
作者 Ezenwa Alfred Ogbonnaya Hyginus Ubabuike Ugwu Charles Agbeju Nimibofa Johnson 《Engineering(科研)》 2010年第8期658-664,共7页
Surge and stall are the two main types of instabilities that often occur on the compressor system of gas turbines. The effect of this instability often leads to excessive vibration due to the back pressure imposed to ... Surge and stall are the two main types of instabilities that often occur on the compressor system of gas turbines. The effect of this instability often leads to excessive vibration due to the back pressure imposed to the system by this phenomenon. In this work, fouling was observed as the major cause of the compressor instability. A step to analyze how this phenomenon can be controlled with the continuous examination of the vibration amplitude using a computer approach led to the execution of this work. The forces resulting to vibration in the system is usually external to it. This external force is aerodynamic and the effect was modeled using force damped vibration analysis. A gas turbine plant on industrial duty for electricity generation was used to actualize this research. The data for amplitude of vibration varied between -15 and 15 mm/s while the given mass flow rate and pressure ratio were determined as falling between 6.1 to 6.8 kg/s and 9.3 to 9.6 respectively. A computer program named VICOMS written in C++ programming language was developed. The results show that the machine should not be run beyond 14.0 mm vibration amplitude in order to avoid surge, stall and other flow-induced catastrophic breakdown. 展开更多
关键词 COMPUTERIZED Solution INSTABILITIES VIBRATION Gas TURBINE compressors OPERATIONAL Limits
下载PDF
Avelair Compressors采用新型驱动器降低压缩空气成本
4
《变频器世界》 2004年第11期20-21,共2页
近期,Avelair Compressors采用了最新型的Unidrive SP驱动器,对其原有产品进行了可调速改造,改造后的方案与以往的定速方案相比,大约可节省30%以上的能源。常务董事Brian Wood表示:“选用Unidrive SP及板载的PLC,使我们的产品结... 近期,Avelair Compressors采用了最新型的Unidrive SP驱动器,对其原有产品进行了可调速改造,改造后的方案与以往的定速方案相比,大约可节省30%以上的能源。常务董事Brian Wood表示:“选用Unidrive SP及板载的PLC,使我们的产品结构更紧凑、效率更高、价格更具竞争力。由于压缩机可随时根据要求调节输出,用户在任何时候都能获得最高效率。” 展开更多
关键词 Unidrive SP驱动器 压缩机 压缩空气成本 Avelair compressors公司
下载PDF
Experimental Analysis of the Performances of Unit Refrigeration Systems Based on Parallel Compressors with Consideration of the Volumetric and Isentropic Efficiency 被引量:8
5
作者 Daoming Shen Chao Gui +1 位作者 Jinhong Xia Songtao Xue 《Fluid Dynamics & Materials Processing》 EI 2020年第3期489-500,共12页
The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression... The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio.Moreover,the following influential factors have been taken into account:evaporation temperature,condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor.The following quantities have been selected as the unit performance measurement indicators:refrigeration capacity,energy efficiency ratio(COP),compressor power consumption,and refrigerant flow rate.The experimental results indicate that the system refrigeration capacity and COP decrease with a decrease in evaporation temperature,increase of condensation temperature,and increase in pressure ratio.The refrigerant flow rate increases with the increase in evaporation temperature,decrease in condensing temperature and increase in pressure ratio.The compressor power consumption increases with the increase in condensing temperature and increase in pressure ratio,but is not significantly affected by the evaporation temperature. 展开更多
关键词 Parallel compressor unit evaporation temperature condensation temperature pressure ratio refrigeration capacity energy efficiency ratio(COP)
下载PDF
Effects of process parameters on semi-solid squeeze casting performance of aluminum alloy scrolls for scroll compressors 被引量:4
6
作者 Yong-fei Wang Sheng-dun Zhao +1 位作者 Yi Guo Jun-ling Yang 《China Foundry》 SCIE 2020年第5期347-356,共10页
The aluminum alloy scroll is one of the key parts of the scroll compressors widely used in the air-conditioning,refrigeration,and heat pump systems.In this work,the semi-solid squeeze casting(SSSC)process was used to ... The aluminum alloy scroll is one of the key parts of the scroll compressors widely used in the air-conditioning,refrigeration,and heat pump systems.In this work,the semi-solid squeeze casting(SSSC)process was used to fabricate the aluminum alloy scroll.The effects of process parameters including the pouring temperature,mold temperature,and squeezing velocity on the filling and solidification behaviors of the alloys were investigated through simulations based on the power law cut-off(PLCO)material model.Results show that there is a significant increase in the flow velocity of the slurry,and the area of the high-speed region enlarges with the increase of the pouring temperature.The homogeneity of the temperature and velocity fields in the slurry is improved with an increase in mold temperature.Both the filling time and its variation rate decrease with an increase in squeezing velocity.The maximum solidification time exhibits a linear variation with the increase in pouring temperature.The shrinkage area is decreased by increasing the mold temperature.The optimal process parameters of the SSSC process were obtained from simulation analysis,which are the pouring temperature of 595°C,mold temperature of 350°C,and squeezing velocity of 0.3 m·s-1.Moreover,the qualified scroll casting was fabricated using the SSSC process under the optimal process parameters. 展开更多
关键词 semi-solid squeeze casting aluminum alloy scroll compressor numerical simulation experimental verification
下载PDF
Study on effect analysis and parameter optimizing of stepless capacity control system on reciprocating compressors 被引量:2
7
作者 王瑶 Zhang Jinjie +1 位作者 Zhou Chao Liu Wenhua 《High Technology Letters》 EI CAS 2018年第1期1-9,共9页
An improved model of reciprocating compressor operation cycle with a stepless capacity control system is presented and influence of the key parameters of the system is evaluated. In the stepless capacity control syste... An improved model of reciprocating compressor operation cycle with a stepless capacity control system is presented and influence of the key parameters of the system is evaluated. In the stepless capacity control system of a reciprocating compressor,mechanical unloaders are used to partially hold suction valves open for a certain time during the compression stroke. The typical working process of the reciprocating compressor is changed by capacity regulation apparatus. However,some critical parameters like the hydraulic force acting at the unloader have not been rigorously studied in previous researches. Here an improved numerical model of a double acting reciprocating compressor under the control stepless capacity is proposed and verified by experimental trials. Numerical simulations are carried out to select and evaluate the acting force which definitely has an influence on indicator diagrams of compressors. It is observed that the optimized range of 350 N to 380 N is preferable for the unloader force such that the intensity of opening and closing impacts are minimized. 展开更多
关键词 reciprocating COMPRESSOR STEPLESS capacity CONTROL NUMERICAL MODEL parametersoptimization
下载PDF
Fault Diagnosis of Reciprocating Compressors Valve Based on Cyclostationary Method 被引量:1
8
作者 王雷 王奉涛 +1 位作者 赵俊龙 马孝江 《Journal of Donghua University(English Edition)》 EI CAS 2011年第4期349-352,共4页
The relationship between second-order cyclostationary method and time-frequency distribution is studied, and cyclic autocorrelation(CA) function is indicated to be one sort of special time-frequency distribution met... The relationship between second-order cyclostationary method and time-frequency distribution is studied, and cyclic autocorrelation(CA) function is indicated to be one sort of special time-frequency distribution method. Furthermore, a fault diagnosis method for reciprocating compressors based on empirical mode decomposition (EMD) and CA function is proposed, and then it is applied to the fault diagnosis of reciprocating compressor valve. Firstly, the vibration signal of reciprocating compressor valve is decomposed by using ENID method, and several intrinsic mode functions (IMFs) are obtained. Secondly, the IMFs are evaluated by some denoising criterions to remove the noise and interfering ones. Finally, the CA functions of the remained IMFs are calculated, which will be used to reconstruct the CA function of the original vibration signal. Engineering application indicates that this method can sufficiently inhibit the cross-interference items of CA function. Therefore, more explicit working conditions of reciprocating compressor components can be achieved. 展开更多
关键词 reciprocating compressor VALVE fault diagnosis cyclic autocorrelation (CA) function empirical mode decomposition (EMD)
下载PDF
Study of Failure Diagnostic Methods and Intelligent Diagnostic System for Reciprocating Compressors 被引量:5
9
作者 LIU Wei hua, ANG Hai song Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R.China 《International Journal of Plant Engineering and Management》 2002年第3期126-132,共7页
Three categories of failure diagnostic methods for reciprocating compressors are classified according to the signals adopted by the diagnosis. They are parameter method, vibration method, and oil analysis method. In t... Three categories of failure diagnostic methods for reciprocating compressors are classified according to the signals adopted by the diagnosis. They are parameter method, vibration method, and oil analysis method. In this paper, the applicable range and operational difficulties of these methods are discussed on the basis of analysis and induction upon normal failure. It is proposed that a compressor's normal failure can be divided into thermodynamical property failure and mechanical function failure. As to the former, the parameter method that takes a cylinder pressure signal as the main diagnostic signal may be applied; and as to the latter, the vibration signal frequency spectrum can be used to diagnose. At the same time, the structure of an intelligent diagnostic system based on neural networks is introduced, and its schematic is given. 展开更多
关键词 failure diagnostic method intellingent diagnostic system reciprocating compressor
下载PDF
Investigation on Surge in Centrifugal Compressors
10
作者 朱智富 马朝臣 陈山 《Journal of Beijing Institute of Technology》 EI CAS 2009年第4期422-427,共6页
A test bench for conducting compressor surge experiments is set up, and different system configurations formed by changing the length of compressor outlet pipeline are tested for surge. Dynamic pressure signals relati... A test bench for conducting compressor surge experiments is set up, and different system configurations formed by changing the length of compressor outlet pipeline are tested for surge. Dynamic pressure signals relating to surges are acquired at different locations of the configurations using unsteady measurement & data acquisition system. The sliding window method is adopted to set up quantitative criterion on the surge. Parameters included in the criterion, such as location of data collection, size and step of sliding window, a mathematical quantity surge-judging and its threshold, etc., are given. Flow chart of surge evaluation is shown, and surge frequency was evaluated based on system configurations. With all these, the problem of judging the existence of surge by human experiences in compressor performance experiments can be solved. Hence this new approach may help to achieve intelligent operations on automatic compressor performance testrig. 展开更多
关键词 centrifugal compressor surge detection turboeharger sliding window
下载PDF
Compressors for Hyper-Sonic Engines —A Theoretical Study of Future Compressors for Hyper Sonic Engines
11
作者 Christine Cherian 《Advances in Aerospace Science and Technology》 2018年第4期89-99,共11页
This paper is an eye opening to the new horizon of the design of operational Compressors in our jet engines. That are compressors usually perform an operation called isentropic process and which levitate the pressure ... This paper is an eye opening to the new horizon of the design of operational Compressors in our jet engines. That are compressors usually perform an operation called isentropic process and which levitate the pressure and temperature to the optimum level which require for effective ignition. Basically, our compressors have several sets of blades to perform this function, more precisely saying Rotor and stator blades. Where rotor blade provides air molecule to push at very high velocity to the Stationary blade and when the air Enders to the Stator, the stator races its pressure to move on to the next stage. And we call this set of Stator and rotor as a stage ref [1]. However, in this work, I consider the geometry of the incoming air molecule and how it transforms its physical quantities such as Pressure and temperature ref [2]. For that I tie the concept of Thermodynamic and mechanics on the platform of Tensor analysis ref [3]. That is, I consider the quantities like Pressure, Temperature and rate of flow are their corresponding vector spaces and energy related quintets like heat, work as the scaling elements on the above vector space. And quantities such as entropy enthalpy and specific heat capacity are corresponding physics of it. Considering the advantages, one of the important advantages of this approach is the applicability of results of this work to the formulation of blade less compression Example: Ram and Scram jet engine. Again, the relevant upgrading which is essential for future hypersonic air crafts can achieve from this study and this will be a mile stone for bright air and space travel. To conclude, this approach will be a great transformation on the conventional idea for realization of compression for operational Scram and Ram jet engines ref [4] [5]. 展开更多
关键词 Adiabatic Compression Power COMPRESSOR M-B Distribution RIEMANN Geometry Matric Tensor High Energy Molecule Ref BESSEL Function EFFICIENCY of the COMPRESSOR Poly-Entropy EFFICIENCY
下载PDF
Reducing the Gas Pressure Drop in Suction Mufflers of Hermetic Reciprocating Compressors
12
作者 Janatas Ferreira Lacerda Jose Luiz Gasche +1 位作者 Joao Fabio Parise de Lara Danilo Martins Arantes 《Journal of Energy and Power Engineering》 2014年第3期423-430,共8页
The suction muffler of hermetic reciprocating compressors is installed in order to attenuate the noise generated by the gas pulsation of the flow through the suction valve. However, the installation of the suction muf... The suction muffler of hermetic reciprocating compressors is installed in order to attenuate the noise generated by the gas pulsation of the flow through the suction valve. However, the installation of the suction muffler affects the operation of the compressor owing to gas pressure drop, which causes volumetric and energetic efficiency loss due to the gas specific volume augmentation. Therefore, there is a compromise between sound attenuation and pressure drop increase, which has to be taken into account by compressor designers. In this work, it presents a numerical solution to the flow through a suction muffler in order to analyze the pressure field and point out the main contributions to the overall pressure drop of the flow. A commercial CFD (computational fluid dynamics) code was used to perform the numerical simulations and the results were validated by using experimental data. After analyzing the pressure field, the geometry of the muffler was modified intending to decrease the flow pressure drop. The geometric modification produced a 28% reduction on the overall pressure drop, without influencing the sound attenuation. 展开更多
关键词 REFRIGERATION hermetic reciprocating COMPRESSOR muffler.
下载PDF
Comparative Analysis of Diagonal and Centrifugal Compressors with Synergy Theory in Compressed Air Energy Storage System
13
作者 ZHANG Yuxin ZUO Zhitao +2 位作者 ZHOU Xin GUO Wenbin CHEN Haisheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1325-1339,共15页
Energy storage technology is an essential part of the efficient energy system.Compressed air energy storage(CAES)is considered to be one of the most promising large-scale physical energy storage technologies.It is fav... Energy storage technology is an essential part of the efficient energy system.Compressed air energy storage(CAES)is considered to be one of the most promising large-scale physical energy storage technologies.It is favored because of its low-cost,long-life,environmentally friendly and low-carbon characteristics.The compressor is the core component of CAES,and the performance is critical to the overall system efficiency.That importance is not only reflected in the design point,but also in the continuous efficient operation under variable working conditions.The diagonal compressor is currently the focus of the developing large-scale CAES because of its stronger flow capacity compared with traditional centrifugal compressors.And the diagonal compressor has the higher single stage pressure ratio compared with axial compressors.In this paper,the full three dimensional numerical simulation technologies with synergy theory are used to compare and analyze the internal flow characteristics.The performance of the centrifugal and diagonal impellers that are optimized under the same requirements for large-scale CAES has been analyzed.The relationship between the internal flow characteristics and performance of the centrifugal and diagonal impellers with the change of mass flow rates and total inlet temperature is given qualitatively and quantitatively.Where the cosine value of the synergy angle is high,the local flow loss is large.The smaller proportion of the positive area is the pursuit of design.Through comparative analysis,it is concluded that the internal flow and performance changes of centrifugal and diagonal impellers are different.The results confirm the superiority and feasibility of the off-design performance of the diagonal compressor applied to the developing large-scale CAES. 展开更多
关键词 compressed air energy storage synergy theory diagonal compressor centrifugal compressor comparative analysis
原文传递
An improved deviation model for transonic stages in axial compressors
14
作者 Xiaochen WANG Xuesong LI +3 位作者 Xiaodong REN Chunwei GU Xiaobin QUE Guoyu ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期93-108,共16页
Deviation model is an important model for through-flow analysis in axial compressors.Theoretical analysis in classical deviation models is developed under the assumption of onedimensional flow,which is controlled by t... Deviation model is an important model for through-flow analysis in axial compressors.Theoretical analysis in classical deviation models is developed under the assumption of onedimensional flow,which is controlled by the continuity equation.To consider three-dimensional characteristics in transonic flow,this study proposes an improved theoretical analysis method combining force analysis of the blade-to-blade flow with conventional analysis of the continuity equation.Influences of shock structures on transverse force,streamwise velocity and streamline curvature in the blade-to-blade flow are analyzed,and support the analytical modelling of density flow ratio between inlet and outlet conditions.Thus,a novel deviation model for transonic stages in axial compressors is proposed in this paper.The empirical coefficients are corrected based on the experimental data of a linear cascade,and the prediction accuracy is validated with the experimental data of a three-stage transonic compressor.The novel model provides accurate predictions for meridional flow fields at the design point and performance curves at design speed,and shows obvious improvements on classical models by Carter and C¸etin. 展开更多
关键词 Axial compressor Transonic flow Deviation model Through-flow method Aerodynamic performance
原文传递
Design Strategy of Diagonal Compressors in Compressed Air Energy Storage System
15
作者 ZHANG Yuxin ZUO Zhitao +2 位作者 GUO Wenbin LIANG Qi CHEN Haisheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期872-887,共16页
As a kind of large-scale physical energy storage,compressed air energy storage(CAES)plays an important role in the construction of more efficient energy system based on renewable energy in the future.Compared with tra... As a kind of large-scale physical energy storage,compressed air energy storage(CAES)plays an important role in the construction of more efficient energy system based on renewable energy in the future.Compared with traditional industrial compressors,the compressor of CAES has higher off-design performance requirements.From the perspective of design,it needs to pay attention not only to the performance of the design point,but also to the performance of all the stable working range.However,from the previous literature,no diagonal compressor was used in CAES which can meet the requirements,which also reflects the design program can be further improved.Therefore,this paper studies the design strategy of high efficient diagonal compressor for large-scale CAES,and gives the complete strategy algorithms used for different program modules.The pressure ratio,isentropic efficiency and stable working range are comprehensively considered.In the design process,the criteria for the key parameters of the diagonal flow angle of the diagonal compressor are given for the first time.The results show that the isentropic efficiency at the design point is 92.7%,the total pressure ratio is1.97,and the stable working range exceeds 20%,which meets the design requirements of the compressor for CAES and exceeds the overall performance of the previous compressors in the entire working range. 展开更多
关键词 compressed air energy storage design strategy diagonal compressor optimal selection design procedure
原文传递
Effects of Inlet Circumferential Fluctuation on the Sweep Aerodynamic Performance of Axial Fans/Compressors 被引量:9
16
作者 Xingmin Gui Fang Zhu +1 位作者 Ke Wan Donghai Jin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第5期383-394,共12页
Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successful... Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr.Wennerstrom in the 1980s.However,some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency,vibration and reliability.Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation(CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade.The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper.The results show that the CF source items which originate from design parameters,such as the spanwise distributions of the loading and blading geometries,contribute to the changing of averaged incidence spanwise distribution,and further more affect the performance of axial fans/compressors with swept blades. 展开更多
关键词 TURBOMACHINERY fans/compressors sweep aerodynamics quasi-3D method 3D flow
原文传递
Using tandem blades to break loading limit of highly loaded axial compressors 被引量:6
17
作者 Baojie LIU Chuanhai ZHANG +2 位作者 Guangfeng AN Du FU Xianjun YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期165-175,共11页
It is confirmed that tandem-blade configurations have potential to enlarge the flow turning in two-dimension(2D) studies. However, the potential of tandem blades to enlarge the design space for highly loaded axial com... It is confirmed that tandem-blade configurations have potential to enlarge the flow turning in two-dimension(2D) studies. However, the potential of tandem blades to enlarge the design space for highly loaded axial compressors was rarely investigated in open literatures. The present work aims to show the capability of tandem blades to break the loading limit of conventional blades for highly loaded compressors. The 2D models of the maximum static pressure rise derived in previous work were validated by a large amount experimental data, which showed a good agreement. An E parameter was defined to evaluate the stall margin of compressor based on the theoretical models, which indicated that the tandem blade was able to increase the loading limit of axial compressors. A single-blade stage with a loading coefficient of 0.46(based on the blade tip rotating speed) was designed as the baseline case under the guidance of the E parameter. A tandem-blade stage was then designed by ensuring that the velocity triangles were similar to the single-blade stage. The performances of both stages were investigated experimentally. The results showed that the maximum efficiency of the tandem-blade stage was 92.8%, 1% higher than the single;the stall margin increased from 16.9% to 22.3%. Besides, the maximum pressure rise of tandem rotors was beyond the loading limit of 2D single-blade cascades, which confirmed the potential of tandem blades to break the loading limit of axial compressors. 展开更多
关键词 CASCADES Highly loaded axial compressors Loading limit Single blades Tandem blades
原文传递
Investigation of model development for deterministic correlations associated with impeller-diffuser interactions in centrifugal compressors 被引量:5
18
作者 LIU BaoJie ZHANGBo LIU YangWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第3期499-509,共11页
The average-passage equation system(APES)provides a rigorous framework to account for the deterministic unsteady effects by the so-called deterministic correlations(DC),which include both deterministic stress correlat... The average-passage equation system(APES)provides a rigorous framework to account for the deterministic unsteady effects by the so-called deterministic correlations(DC),which include both deterministic stress correlations(DCS)and deterministic total enthalpy correlations(DCH).These correlations should be modeled to close the system of equations.In this paper,the distribution of DC in a transonic centrifugal compressor is presented,and its relative importance is revealed.The assumption made by Adamczyk that the pure unsteady fluctuation is significantly smaller than the spatial fluctuation is verified at the impeller-diffuser interface.The decomposition of DCH is also discussed to determine its two different physical mechanisms.Finally,the transport equations in terms of DCS in cylindrical coordinates are derived,and the terms are evaluated to determine the ones that are necessary to model.All these analyses significantly contribute to our model development for DC in centrifugal compressors. 展开更多
关键词 centrifugal compressors impeller-diffuser interactions deterministic correlations transport equations
原文传递
Influence of sub boundary layer vortex generator height and attack angle on cross-flows in the hub region of compressors 被引量:3
19
作者 Hao FU Ling ZHOU Lucheng JI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第8期30-44,共15页
It has been recently shown that Sub Boundary layer Vortex Generator(SBVG,abbreviated as VG hereafter)can suppress the Cross-Flow(CF),and therefore,can eliminate corner separation and increase aerodynamic loading when ... It has been recently shown that Sub Boundary layer Vortex Generator(SBVG,abbreviated as VG hereafter)can suppress the Cross-Flow(CF),and therefore,can eliminate corner separation and increase aerodynamic loading when installed on the end wall inside middle-load compressor passages.However,when VGs are applied in high-load compressors,it is difficult to achieve ideal results.This is because the definition of the VG attack angle in the presence of CF in existing research is confusing,and the stronger CF in high-load compressors worsens the problem and results in an improper design and optimization range of VG attack angle.Therefore,this paper clarifies the definition of the VG attack angle in the presence of CF and reveals the CF controlling mechanism of VG on a flat plate.The differences in the flow phenomena around a VG both with and without CF are also studied.The numerical results show that a larger height or attack angle of the VG generates a greater CF suppression effect.However,the cross velocity increases when surmounting the primary vortex induced by the VG,except that this enhanced CF is less conspicuous for larger VG heights.Compared to the cases without CF,the VG suffers an additional loss because of the stronger separation and primary vortex loss caused by the CF. 展开更多
关键词 compressors Corner separation CROSS-FLOW Flat plate Vortex generator
原文传递
Modal Decomposition for the Analysis of the Rotor-stator Interactions in Multi-stage Compressors 被引量:2
20
作者 N.Courtiade X.Ottavy N.Gourdain 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第3期276-285,共10页
A modal analysis method of the rotor-stator interactions in multistage compressors has been developed by LMFA. This method, based on a double modal decomposition of the flow over space and time, has been applied to nu... A modal analysis method of the rotor-stator interactions in multistage compressors has been developed by LMFA. This method, based on a double modal decomposition of the flow over space and time, has been applied to nu- merical and experimental results of the high-speed 3Y2-stage compressor CREATE based at LMFA, Lyon-France. It reveals the presence of a very strong rotor-stator interaction which completely drives the flow at casing behind all the rotors. This modal analysis method applied to an unsteady RANS simulation permits to calculate the en- ergy of the rotor-stator interactions and to plot energetic meridian maps to explain experimental results and to analyze the interaction in the whole machine. 展开更多
关键词 rotor-stator interactions modal analysis multistage compressors numerical and experimental results
原文传递
上一页 1 2 29 下一页 到第
使用帮助 返回顶部