Ubiquitous computing must incorporate a certain level of security. For the severely resource constrained applications, the energy-efficient and small size cryptography algorithm implementation is a critical problem. H...Ubiquitous computing must incorporate a certain level of security. For the severely resource constrained applications, the energy-efficient and small size cryptography algorithm implementation is a critical problem. Hardware implementations of the advanced encryption standard (AES) for authentication and encryption are presented. An energy consumption variable is derived to evaluate low-power design strategies for battery-powered devices. It proves that compact AES architectures fail to optimize the AES hardware energy, whereas reducing invalid switching activities and implementing power-optimized sub-modules are the reasonable methods. Implementations of different substitution box (S-Boxes) structures are presented with 0.25μm 1.8 V CMOS (complementary metal oxide semiconductor) standard cell library. The comparisons and trade-offs among area, security, and power are explored. The experimental results show that Galois field composite S-Boxes have smaller size and highest security but consume considerably more power, whereas decoder-switch-encoder S-Boxes have the best power characteristics with disadvantages in terms of size and security. The combination of these two type S-Boxes instead of homogeneous S-Boxes in AES circuit will lead to optimal schemes. The technique of latch-dividing data path is analyzed, and the quantitative simulation results demonstrate that this approach diminishes the glitches effectively at a very low hardware cost.展开更多
Despite the multifaceted advantages of cloud computing,concerns about data leakage or abuse impedes its adoption for security-sensi tive tasks.Recent investigations have revealed that the risk of unauthorized data acc...Despite the multifaceted advantages of cloud computing,concerns about data leakage or abuse impedes its adoption for security-sensi tive tasks.Recent investigations have revealed that the risk of unauthorized data access is one of the biggest concerns of users of cloud-based services.Transparency and accountability for data managed in the cloud is necessary.Specifically,when using a cloudhost service,a user typically has to trust both the cloud service provider and cloud infrastructure provider to properly handling private data.This is a multi-party system.Three particular trust models can be used according to the credibility of these providers.This pa per describes techniques for preventing data leakage that can be used with these different models.展开更多
基金the "863" High Technology Research and Development Program of China (2006AA01Z226)the Scientific Research Foundation of Huazhong University of Science and Technology (2006Z011B)the Program for New Century Excellent Talents in University (NCET-07-0328).
文摘Ubiquitous computing must incorporate a certain level of security. For the severely resource constrained applications, the energy-efficient and small size cryptography algorithm implementation is a critical problem. Hardware implementations of the advanced encryption standard (AES) for authentication and encryption are presented. An energy consumption variable is derived to evaluate low-power design strategies for battery-powered devices. It proves that compact AES architectures fail to optimize the AES hardware energy, whereas reducing invalid switching activities and implementing power-optimized sub-modules are the reasonable methods. Implementations of different substitution box (S-Boxes) structures are presented with 0.25μm 1.8 V CMOS (complementary metal oxide semiconductor) standard cell library. The comparisons and trade-offs among area, security, and power are explored. The experimental results show that Galois field composite S-Boxes have smaller size and highest security but consume considerably more power, whereas decoder-switch-encoder S-Boxes have the best power characteristics with disadvantages in terms of size and security. The combination of these two type S-Boxes instead of homogeneous S-Boxes in AES circuit will lead to optimal schemes. The technique of latch-dividing data path is analyzed, and the quantitative simulation results demonstrate that this approach diminishes the glitches effectively at a very low hardware cost.
基金supported by National Basic Research (973) Program of China (2011CB302505)Natural Science Foundation of China (61373145, 61170210)+1 种基金National High-Tech R&D (863) Program of China (2012AA012600,2011AA01A203)Chinese Special Project of Science and Technology (2012ZX01039001)
文摘Despite the multifaceted advantages of cloud computing,concerns about data leakage or abuse impedes its adoption for security-sensi tive tasks.Recent investigations have revealed that the risk of unauthorized data access is one of the biggest concerns of users of cloud-based services.Transparency and accountability for data managed in the cloud is necessary.Specifically,when using a cloudhost service,a user typically has to trust both the cloud service provider and cloud infrastructure provider to properly handling private data.This is a multi-party system.Three particular trust models can be used according to the credibility of these providers.This pa per describes techniques for preventing data leakage that can be used with these different models.