Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy...Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.展开更多
We propose a novel kind of termination criteria, reduced precision solution (RPS) criteria, for solving optimal control problems (OCPs) in nonlinear model predictive control (NMPC), which should be solved quickly for ...We propose a novel kind of termination criteria, reduced precision solution (RPS) criteria, for solving optimal control problems (OCPs) in nonlinear model predictive control (NMPC), which should be solved quickly for new inputs to be applied in time. Computational delay, which may destroy the closed-loop stability, usually arises while non-convex and nonlinear OCPs are solved with differential equations as the constraints. Traditional termination criteria of optimization algorithms usually involve slow convergence in the solution procedure and waste computing resources. Considering the practical demand of solution precision, RPS criteria are developed to obtain good approximate solutions with less computational cost. These include some indices to judge the degree of convergence during the optimization procedure and can stop iterating in a timely way when there is no apparent improvement of the solution. To guarantee the feasibility of iterate for the solution procedure to be terminated early, the feasibility- perturbed sequential quadratic programming (FP-SQP) algorithm is used. Simulations on the reference tracking performance of a continuously stirred tank reactor (CSTR) show that the RPS criteria efficiently reduce computation time and the adverse effect of computational delay on closed-loop stability.展开更多
基金National Natural Science Foundation of China under Grant Nos.51639006 and 51725901
文摘Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
基金supported by the National Natural Science Foundation of China (Nos. 60934007 and 60974007)the National Basic Research Program (973) of China (No. 2009CB320603)
文摘We propose a novel kind of termination criteria, reduced precision solution (RPS) criteria, for solving optimal control problems (OCPs) in nonlinear model predictive control (NMPC), which should be solved quickly for new inputs to be applied in time. Computational delay, which may destroy the closed-loop stability, usually arises while non-convex and nonlinear OCPs are solved with differential equations as the constraints. Traditional termination criteria of optimization algorithms usually involve slow convergence in the solution procedure and waste computing resources. Considering the practical demand of solution precision, RPS criteria are developed to obtain good approximate solutions with less computational cost. These include some indices to judge the degree of convergence during the optimization procedure and can stop iterating in a timely way when there is no apparent improvement of the solution. To guarantee the feasibility of iterate for the solution procedure to be terminated early, the feasibility- perturbed sequential quadratic programming (FP-SQP) algorithm is used. Simulations on the reference tracking performance of a continuously stirred tank reactor (CSTR) show that the RPS criteria efficiently reduce computation time and the adverse effect of computational delay on closed-loop stability.