期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Computational fluid dynamics simulation and experimental analysis of ultrafine powder suspension
1
作者 Wang-Chao Wu Jian Cui +2 位作者 Hao Jiang Hai-Bo Jiang Chun-Zhong Li 《Rare Metals》 SCIE EI CAS CSCD 2020年第7期850-860,共11页
The suspension characteristics of ultrafine powder slurry in the stirred vessel were simulated by using computational fluid dynamics.The results show that the Rushton disk turbine impeller is more conducive to maintai... The suspension characteristics of ultrafine powder slurry in the stirred vessel were simulated by using computational fluid dynamics.The results show that the Rushton disk turbine impeller is more conducive to maintaining suspended homogeneity and circulation of slurry compared with the pitch blade turbine pumping up impeller and the pitch blade turbine pumping down impeller.And the increase in stirring speed enhances turbulent fluctuation and anisotropic velocity of the fluid at the cost of more power consumption,which improves dispersibility and suspensibility of the particles.Meanwhile,the change of impeller clearance has a weak influence on the flow pattern,and the impeller clearance of 0.32T(T is the diameter of the bottom of the reactor)can achieve better dispersivity and suspensibility of the particles with lower power consumption and larger axial velocity.The experiments of surface coating modification of ultrafine titanium dioxide(TiO2)were carried out under the same conditions for those of the simulation system.The surface film morphology and photocatalytic properties of the modified TiO2 were analyzed,and the obtained data are well consistent with the simulation results. 展开更多
关键词 computational fluid dynamics simulation Ultrafine powder slurry Suspension quality Impeller type Stirring speed Impeller clearance
原文传递
COMPUTATIONAL FLUID DYNAMICS(CFD) SIMULATIONS OF DRAG REDUCTION WITH PERIODIC MICRO-STRUCTURED WALL 被引量:4
2
作者 LI Gang ZHOU Ming +2 位作者 WU Bo YE Xia CAI Lan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期77-80,共4页
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num... Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them. 展开更多
关键词 Reynoids numbers Slip velocity Drag reduction computational fluid dynamics(CFD) simulations
下载PDF
Effect of the Particle Packing Configuration on Fixed Bed Performance
3
作者 Li Ziqi Bao Di +1 位作者 Zhou Han Tang Xiaojin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期152-160,共9页
Fixed-bed reactors are generally considered the optimal choice for numerous multi-phase catalytic reactions due to their excellent performance and stability.However,conventional fixed beds often encounter challenges r... Fixed-bed reactors are generally considered the optimal choice for numerous multi-phase catalytic reactions due to their excellent performance and stability.However,conventional fixed beds often encounter challenges related to inadequate mass transfer and a high pressure drop caused by the non-uniform void fraction distribution.To enhance the overall performance of fixed beds,the impact of different packing configurations on performance was investigated.Experimental and simulation methods were used to investigate the fluid flow and mass transfer performances of various packed beds under different flow rates.It was found that structured beds exhibited a significantly lower pressure drop per unit length than conventional packed beds.Furthermore,the packing configurations had a critical role in improving the overall performance of fixed beds.Specifically,structured packed beds,particularly the H-2 packing configuration,effectively reduced the pressure drop per unit length and improved the mass transfer efficiency.The H-2 packing configuration consisted of two parallel strips of particles in each layer,with strips arranged perpendicularly between adjacent layers,and the spacing between the strips varied from layer to layer. 展开更多
关键词 packing configurations fixed bed computational fluid dynamics simulation pressure drop mass transfer
下载PDF
CFD Simulation and Experimental Study of a New Elastic Blade Wave Energy Converter 被引量:4
4
作者 Chongfei Sun Jianzhong Shang +3 位作者 Zirong Luo Xin Li Zhongyue Lu Guoheng Wu 《Fluid Dynamics & Materials Processing》 EI 2020年第6期84-96,共13页
Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient ... Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient power supply modes is one of the technical bottlenecks restricting the effective utilisation of this type of equipment.In this work,the performance characteristics of a new type of elastic-blade/wave-energy converter(EBWEC)and its core energy conversion component(named wave energy absorber)are comprehensively studied.In particular,computational fluid dynamics(CFD)simulations and experiments have been used to analyze the hydrodynamics and performance characteristics of the EBWEC.The pressure cloud diagrams relating to the surface of the elastic blade were obtained through two-way fluid-solid coupling simulations.The influence of blade thickness and relative speed on the performance characteristics of EBWEC was analyzed accordingly.A prototype of the EBWEC and its bucket test platform were also developed.The power characteristics of the EBWEC were analyzed and studied by using the blade thickness and motion cycle as control variables.The present research shows that the EBWEC can effectively overcome the performance disadvantages related to the transmission shaft torque load and power curve fluctuations of rigid blade wave energy converters(RBWEC). 展开更多
关键词 Elastic blade wave energy converter structural design energy conversion mechanism computational fluid dynamics simulation EXPERIMENT hydrodynamic characteristics
下载PDF
Sheltering effect of punched steel plate sand fences for controlling blown sand hazards along the Golmud-Korla Railway:Field observation and numerical simulation studies 被引量:3
5
作者 ZHANG Kai TIAN Jianjin +2 位作者 QU Jianjun ZHAO Liming LI Sheng 《Journal of Arid Land》 SCIE CSCD 2022年第6期604-619,共16页
Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studi... Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studies have assessed the protective effect of PSP sand fences,especially through field observations.This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics(CFD)numerical simulation.The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8%and 70.8%,respectively.Moreover,the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8%and 81.1%,respectively.The sand-resistance efficiency of the double-row PSP sand fences was 65.4%.Sand deposition occurred close to the first-row sand fence;however,there was relatively little sand on the leeward side of the second-row sand fence.The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations,indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences.This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas.The output of this work is expected to improve the future application of PSP sand fences. 展开更多
关键词 punched steel plate sheltering effect field observations computational fluid dynamics numerical simulation windproof efficiency
下载PDF
Application of FLUENT on fine-scale simulation of wind field over complex terrain 被引量:2
6
作者 Lei Li LiJie Zhang +3 位作者 Ning Zhang Fei Hu Yin Jiang WeiMei Jiang 《Research in Cold and Arid Regions》 2010年第5期411-418,共8页
The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FL... The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy. 展开更多
关键词 FLUENT computational fluid dynamics (CFD) complex terrain wind field fine-scale simulation
下载PDF
Process Modeling of Ferrofluids Flow for Magnetic Targeting Drug Delivery
7
作者 LIU Handan WANG Shigang XU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期440-445,共6页
Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although ther... Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application. 展开更多
关键词 Magnetic targeting drug delivery FERROfluidS magnetic nano-particels process modeling HYDROdynamics computational fluid dynamics(CFD) numerical simulation Magnetic resonance imaging
下载PDF
An exploratory study of three-dimensional MP-PIC-based simulation of bubbling fluidized beds with and without baffles 被引量:3
8
作者 Shuai Yang Hao Wu +2 位作者 Weigang Lin Hongzhong Li Qingshan Zhua 《Particuology》 SCIE EI CAS CSCD 2018年第4期68-77,共10页
In this study, the flow characteristics of Geldart A particles in a bobbling fluidized bed with and without perforated plates were simulated by the multiphase particle-in-cell (MP-PlC)-based Eolerian-Lagrangian meth... In this study, the flow characteristics of Geldart A particles in a bobbling fluidized bed with and without perforated plates were simulated by the multiphase particle-in-cell (MP-PlC)-based Eolerian-Lagrangian method. A modified structure-based drag model was developed based on our previous work. Other drag models including the Parker and Wen-Yo-Ergon drag models were also employed to investigate the effects of drag models on the simulation results. Although the modified structure-based drag model better predicts the gas-solid flow dynamics of a baffle-free bubbling fluidized bed in comparison with the experimental data, none of these drag models predict the gas-solid flow in a baffled bobbling floidized bed sufficiently well because of the treatment of baffles in the Barracuda software. To improve the simulation accuracy, future versions of Barracuda should address the challenges of incorporating the bed height and the baffles. 展开更多
关键词 BaffleGeldart A particles Bubbling fluidized beds simulation Multi-phase particle-in-cell computational particle fluid dynamics
原文传递
Simulations of vertical jet penetration using a filtered two-fluid model in a gas-solid fluidized bed 被引量:1
9
作者 Shuyan Wang Baoli Shao +5 位作者 Xiangyu Li Jian Zhao Lili Liu Yikun Liu gang Liu Qun Dong 《Particuology》 SCIE EI CAS CSCD 2017年第2期95-104,共10页
The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. ... The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. The distributions of volume fraction and the velocity of particles along the lateral direction were investigated for different jet velocities by analyzing the simulated results. The vertical jet penetration lengths at the different gas jet velocities have been obtained and compared with predictions derived from empirical correlations; the predicted air jet penetration length is discussed. Agreement between the numerical simulations and experimental results has been achieved. 展开更多
关键词 fluidized bed Vertical jet penetration Filtered model computational fluid dynamics Numerical simulation
原文传递
Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamic and reaction kinetic modeling
10
作者 Xuesong Lu Xiaojiao Luo +2 位作者 Warren A.Thompson Jeannie Z.Y.Tan MMercedes Maroto-Valer 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第7期1149-1163,共15页
The production of solar fuels via the photoreduction of carbon dioxide to methane by titanium oxide is a promising process to control greenhouse gas emissions and provide alternative renewable fuels. Although several ... The production of solar fuels via the photoreduction of carbon dioxide to methane by titanium oxide is a promising process to control greenhouse gas emissions and provide alternative renewable fuels. Although several reaction mechanisms have been proposed, the detailed steps are still ambiguous, and the limiting factors are not well defined. To improve our understanding of the mechanisms of carbon dioxide photoreduction, a multiphysics model was developed using COMSOL. The novelty of this work is the computational fluid dynamic model combined with the novel carbon dioxide photoreduction intrinsic reaction kinetic model, which was built based on three-steps, namely gas adsorption, surface reactions and desorption, while the ultraviolet light intensity distribution was simulated by the Gaussian distribution model and Beer-Lambert model. The carbon dioxide photoreduction process conducted in a laboratory-scale reactor under different carbon dioxide and water moisture partial pressures was then modeled based on the intrinsic kinetic model. It was found that the simulation results for methane, carbon monoxide and hydrogen yield match the experiments in the concentration range of 10^(−4) mol·m^(–3) at the low carbon dioxide and water moisture partial pressure. Finally, the factors of adsorption site concentration, adsorption equilibrium constant, ultraviolet light intensity and temperature were evaluated. 展开更多
关键词 carbon dioxide photoreduction computational fluid dynamic simulation kinetic model Langmuir adsorption
原文传递
Refractory Tubes with Innovative Liner Technology for Flow Control and Clean Steel Applications
11
作者 Patrick SEITZ Yong TANG Gerald NITZL 《China's Refractories》 CAS 2021年第2期35-40,共6页
Ladle shrouds(LS)and submerged entry nozzles(SEN)are flow control products used in continuous casting which transfer the liquid steel from the ladle to the tundish and further to the mould.Due to the strongly differen... Ladle shrouds(LS)and submerged entry nozzles(SEN)are flow control products used in continuous casting which transfer the liquid steel from the ladle to the tundish and further to the mould.Due to the strongly different and quickly changing temperature conditions before and during steel casting,highly thermal shock resistant refractory materials are required which simultaneously save steel process energy.A new technology embeds a special liner into the refractory body inner surface to reduce the heat transfer through the LS/SEN wall.To better understand the function of this insulation layer a mathematical model was applied.Temperature measurements carried out in the steel plant were compared with the simulation results.The research results indicate potential heat loss reduction and performance improvements in the steelmaking process. 展开更多
关键词 refractory tubes flow control computation fluid dynamics simulation
下载PDF
CFD simulation of solid-liquid stirred tanks for low to dense solid loading systems 被引量:13
12
作者 Divyamaan Wadnerkar Moses O. Tade +1 位作者 Vishnu K. Pareek Ranjeet P. Utikar 《Particuology》 SCIE EI CAS CSCD 2016年第6期16-33,共18页
The hydrodynamics of suspension of solids in liquids are critical to the design and performance of stirred tanks as mixing systems. Modelling a multiphase stirred tank at a high solids concentration is complex owing t... The hydrodynamics of suspension of solids in liquids are critical to the design and performance of stirred tanks as mixing systems. Modelling a multiphase stirred tank at a high solids concentration is complex owing to particle-particle and particle-wall interactions which are generally neglected at low concentra- tions. Most models do not consider such interactions and deviate significantly from experimental data. Furthermore, drag force, turbulence and turbulent dispersion play a crucial role and need to be precisely known in predicting local hydrodynamics. Therefore, critical factors such as the modelling approach, drag, dispersion, coefficient of restitution and turbulence are examined and discussed exhaustively in this paper. The Euler-Euler approach with kinetic theory of granular flow, Syamlal-O'Brien drag model and Reynolds stress turbulence model provide realistic predictions for such systems. The contribution of the turbulent dispersion force in improving the prediction is marginal but cannot be neglected at low solids volume fractions. Inferences drawn from the study and the finalised models will be instrumen- tal in accurately simulating the solids suspension in stirred tanks for a wide range of conditions. These models can be used in simulations to obtain precise results needed for an in-depth understanding of hydrodynamics in stirred tanks. 展开更多
关键词 Solid-liquid stirred tanks computational fluid dynamics simulation approach Drag model Turbulence model
原文传递
Numerical comparison of two modes of gas-solid riser operation: Fluid catalytic cracking vs CFB combustor 被引量:4
13
作者 Yifeng Mei Mingzhao Zhao +2 位作者 Bona Lu Sheng Chen Wei Wang 《Particuology》 SCIE EI CAS CSCD 2017年第2期42-48,共7页
Two modes of gas-solid riser operation, i.e., fluid catalytic cracking (FCC) and circulating fluidized bed combustor (CFBC), have been recognized in literature; particularly in the understanding of choking phenome... Two modes of gas-solid riser operation, i.e., fluid catalytic cracking (FCC) and circulating fluidized bed combustor (CFBC), have been recognized in literature; particularly in the understanding of choking phenomena. This work compares these two modes of operation through computational fluid dynamics (CFD) simulation. In CFD simulations, the different operations are represented by fixing appropriate boundary conditions: solids flux or solids inventory. It is found that the FCC and CFBC modes generally have the same dependence of solids flux on the mean solids volume fraction or solids inventory. However, during the choking transition, the FCC mode of operation needs more time to reach a steady state; thus the FCC system may have insufficient time to respond to valve adjustments or flow state change, leading to the choking. The difference between FCC and CFBC systems is more pronounced for the systems with longer risers. A more detailed investigation of these two modes of riser operation may require a three-dimensional full loop simulation with dynamic valve adjustment. 展开更多
关键词 fluidization computational fluid dynamics simulation fluid catalytic cracking Circulating fluidized bed Choking
原文传递
Theoretical modeling and numerical simulations of plasmas generated by shock waves 被引量:6
14
作者 LI JianQiao HAO Li LI Jian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第12期2204-2212,共9页
Electromagnetic(EM) field is a consequence of the plasma generation induced by shock waves generated in impacts and explosions and is an important topic of study in aerospace and geophysics. Experimental research is f... Electromagnetic(EM) field is a consequence of the plasma generation induced by shock waves generated in impacts and explosions and is an important topic of study in aerospace and geophysics. Experimental research is frequently used to investigate the plasma generation in hypervelocity impacts and the EM wave emitted in chemical explosions. However, the basic plasma generation mechanism leading to the EM emission generated by the shock waves in chemical explosions is rarely studied.Therefore, a detailed investigation is performed to determine the state of the plasmas generated by the shock waves in air blast. In addition, a multi-component ionization model was improved to evaluate the ionization state of the generated plasmas. The proposed ionization model was combined with an AUSM+-up based finite volume method(FVM) to simulate the plasmas generated in the air blast. Two typical cases of simulation were carried out to investigate the relation between the shock waves and ionization, as well as the influence of ground reflection on the ionization state. It was found that the ionization zone was close behind the shock front in the air and propagates along with the shock waves. The interaction between the original shock waves and reflected shock waves was found to have a great impact of the order of 2–3 magnitudes, on the degree of ionization of the plasmas generated by the shock waves. This phenomenon explains the observation of additional EM pulses generated by ground reflection, as explored in the reference cited in this paper. 展开更多
关键词 plasma generation air blast shock waves local thermal and reactive equilibrium(LTRE)state computational fluid dynamics(CFD)simulation
原文传递
Influence of drag laws on pressure and bed material recirculation rate in a cold flow model of an 8 MW dual fluidized bed system by means of CPFD 被引量:3
15
作者 Stephan Kraft Friedrich Kirnbauer Hermann Hofbauer 《Particuology》 SCIE EI CAS CSCD 2018年第1期70-81,共12页
A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial compu- tational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed con... A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial compu- tational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynam- ics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydro- dynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton-Levenspiel, and a combination of Wen-Yu]Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and dis- tribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations ofa DFB system with CPFD. 展开更多
关键词 Cold flow modeling fluidIZATION computational particle fluid dynamics(CPFD) simulation Dual fluidized bed computational fluid dynamics
原文传递
The effects of caudal fin deformation on the hydrodynamics of thunniform swimming under self-propulsion 被引量:2
16
作者 Yi-kun Feng Yu-min Su +1 位作者 Huan-xing Liu Yuan-yuan Su 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第6期1122-1137,共16页
To investigate the effects of the caudal fin deformation on the hydrodynamic performance of the self-propelled thunniform swimming,we perform fluid-body interaction simulations for a tuna-like swimmer with thunniform ... To investigate the effects of the caudal fin deformation on the hydrodynamic performance of the self-propelled thunniform swimming,we perform fluid-body interaction simulations for a tuna-like swimmer with thunniform kinematics.The 3-D vortices are visualized to reveal the role of the leading-edge vortex(LEV)in the thrust generation.By comparing the swimming velocity of the swimmer with different caudal fin flexure amplitudes fa,it is shown that the acceleration in the starting stage of the swimmer increases with the increase of fa,but its cruising velocity decreases.The results indicate that the caudal fin deformation is beneficial to the fast start but not to the fast cruising of the swimmer.During the entire swimming process,the undulation amplitudes of the lateral velocity and the yawing angular velocity decrease as fa increases.It is found that the formation of an attached LEV on the caudal fin is responsible for generating the low-pressure region on the surface of the caudal fin,which contributes to the thrust.Furthermore,the caudal fin deformation can delay the LEV shedding from the caudal fin,extending the duration of the low pressure on the caudal fin,which will cause the caudal fin to generate a drag-type force over a time period in one swimming cycle and reduce the cruising speed of the swimmer. 展开更多
关键词 computational fluid dynamics(CFD)numerical simulation SELF-PROPULSION caudal fin DEFORMATION
原文传递
Modeling and simulation of chemically reacting flows in gas-solid catalytic and non-catalytic processes 被引量:5
17
作者 Changning Wu Binhang Yan Yong Jin Yi Cheng 《Particuology》 SCIE EI CAS CSCD 2010年第6期525-530,共6页
This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian... This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general. 展开更多
关键词 Gas-solid chemically reacting flow Cross-scale modeling and simulation Eulerian-Lagrangian scheme computational fluid dynamics (CFD) Discrete element method (DEM) Discrete phase model (DPM)
原文传递
Numerical simulations of single and multi-staged injection of H_(2) in a supersonic scramjet combustor 被引量:1
18
作者 L.Abu-Farah O.J.Haidn H.-P.Kau 《Propulsion and Power Research》 SCIE 2014年第4期175-186,共12页
Computational fuid dynamics(CFD)simulations of a single staged injection of H_(2) through a central wedge shaped strut and a multi staged injection through wall injectors are carried out by using Ansys CFX-12 code.Uns... Computational fuid dynamics(CFD)simulations of a single staged injection of H_(2) through a central wedge shaped strut and a multi staged injection through wall injectors are carried out by using Ansys CFX-12 code.Unstructured terahedral grids for narow channel and quarter geometries of the combustor are generated by using ICEM CFD.Steady three dimensional(3D)Reynods averaged Navier-stokes(RANS)simulations are carried out in the case of no H_(2) injection and compared with the simulations of single staged pilot and/or main H2 injections and multistage injection.Shear stuess transport(SST)based on k-ω turbulent model is adopted.Flow field visualization(omplex shock waves interactions)and static pressure distribution along the wall of the combustor are pradicted and compared with the experimental schlieren images and measured wall static pressures for validation.A good agreement is found between the CFD predicted results and the measured data.The narow and quarter geometries of the combustor give similar results with very small differences.Multi-staged injections of H_(2) enhance the turbulent H_(2)/air mixing by fomming vortices and additional shock waves(bow shocks). 展开更多
关键词 computational fluid dynamics(CFD)Reynolds-averaged Navier-stokes(RANS)simulation Supersonic combustor Shear stresstransport(SST)k-ω Static pressures H_(2)/air mixing Single/multi-stage injection
原文传递
CFD simulation on membrane distillation of NaCl solution
19
作者 Zhaoguang XU Yanqiu PAN Yalan YU 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2009年第3期293-297,共5页
A computational fluid dynamics(CFD)simu-lation that coupled an established heat and mass transfer model was carried out for the air-gap membrane distillation(AGMD)of NaCl solution to predict mass and heat behaviors of... A computational fluid dynamics(CFD)simu-lation that coupled an established heat and mass transfer model was carried out for the air-gap membrane distillation(AGMD)of NaCl solution to predict mass and heat behaviors of the process.The effects of temperature and flowrate on fluxes were first simulated and compared with available experimental data to verify the approach.The profiles of temperature,temperature polarization factor,and mass flux adjacent to the tubular carbon membrane surface were then examined under different feed Reynolds number in the computational domain.Results show that the temperature polarization phenomena can be reduced,and mass flux can be enhanced with increase in the feed Reynolds number. 展开更多
关键词 membrane distillation computational fluid dynamics(CFD)simulation temperature polarization carbon membrane
原文传递
Influence of flow field on stability of throttled surge tanks with standpipe 被引量:4
20
作者 安建峰 张健 +1 位作者 俞晓东 陈胜 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第2期294-299,共6页
The steady-state flow field characteristics have important effects on the stability of the throttled surge tank with the standpipe. This paper analyzes these effects on the basis of the numerical simulation of the flo... The steady-state flow field characteristics have important effects on the stability of the throttled surge tank with the standpipe. This paper analyzes these effects on the basis of the numerical simulation of the flow field by using the Computational Fluid Dynamics (CFD) method. It is shown that the anticlockwise recirculation zone is formed in the standpipe, which affects the local head loss at the junction of the standpipe with the pipeline. The variation of the head loss coefficient at the junction is linearly related with the diameter ratio of the standpipe to the pipeline. The dimensionless recirculation flow rate is proportional to the square of the diameter ratio. Considering the effects of the recirculation zone, an empirical expression of the critical stability area is obtained. Comparing with the Thoma critical area, the area obtained by the present method is smaller, and the reduction depends on the diameter ratio and the ratio of the velocity head to the head losses in the tunnel. words: 展开更多
关键词 critical stability area throttled surge tank computational fluid dynamics (CFD) simulation turbulence model flow field
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部