In this paper,we have proposed a numerical method for Singularly Perturbed Boundary Value Problems(SPBVPs)of convection-diffusion type of third order Ordinary Differential Equations(ODEs)in which the SPBVP is reduced ...In this paper,we have proposed a numerical method for Singularly Perturbed Boundary Value Problems(SPBVPs)of convection-diffusion type of third order Ordinary Differential Equations(ODEs)in which the SPBVP is reduced into a weakly coupled system of two ODEs subject to suitable initial and boundary conditions.The numerical method combines boundary value technique,asymptotic expansion approximation,shooting method and finite difference scheme.In order to get a numerical solution for the derivative of the solution,the domain is divided into two regions namely inner region and outer region.The shooting method is applied to the inner region while standard finite difference scheme(FD)is applied for the outer region.Necessary error estimates are derived for the method.Computational efficiency and accuracy are verified through numerical examples.The method is easy to implement and suitable for parallel computing.展开更多
计算机代数是近三十年发展起来的关于数学、计算机及人工智能方面的交叉学科,是数学发展的前沿学科,应用广泛.应用计算机代数系统的强大的符合运算功能以及该系统提供的控制语句,对一类弱非线性系统的有效渐近展开式解进行了研究,不但...计算机代数是近三十年发展起来的关于数学、计算机及人工智能方面的交叉学科,是数学发展的前沿学科,应用广泛.应用计算机代数系统的强大的符合运算功能以及该系统提供的控制语句,对一类弱非线性系统的有效渐近展开式解进行了研究,不但能使其自动求解,而且自动实现在平衡点附近降低微分方程阶数和实行中心流形方法,并试图解决了G r bner基在图论中关于连通图的最短路径问题.展开更多
文摘In this paper,we have proposed a numerical method for Singularly Perturbed Boundary Value Problems(SPBVPs)of convection-diffusion type of third order Ordinary Differential Equations(ODEs)in which the SPBVP is reduced into a weakly coupled system of two ODEs subject to suitable initial and boundary conditions.The numerical method combines boundary value technique,asymptotic expansion approximation,shooting method and finite difference scheme.In order to get a numerical solution for the derivative of the solution,the domain is divided into two regions namely inner region and outer region.The shooting method is applied to the inner region while standard finite difference scheme(FD)is applied for the outer region.Necessary error estimates are derived for the method.Computational efficiency and accuracy are verified through numerical examples.The method is easy to implement and suitable for parallel computing.
文摘计算机代数是近三十年发展起来的关于数学、计算机及人工智能方面的交叉学科,是数学发展的前沿学科,应用广泛.应用计算机代数系统的强大的符合运算功能以及该系统提供的控制语句,对一类弱非线性系统的有效渐近展开式解进行了研究,不但能使其自动求解,而且自动实现在平衡点附近降低微分方程阶数和实行中心流形方法,并试图解决了G r bner基在图论中关于连通图的最短路径问题.