With the development of the science and technology of the computer application, the maintenance management and the security of the computers is an important problem. In this paper the author presents his own opinions ...With the development of the science and technology of the computer application, the maintenance management and the security of the computers is an important problem. In this paper the author presents his own opinions on these issues. Therefore, the maintenance management of the computer local area network is very important to guarantee the security and stability of the network and to the use of the cyber sources to a maximum.展开更多
It is becoming an important social problem to make maintenance and rehabilitation of existing infrastructures such as bridges, buildings, etc. in the world. The kernel of such structure management is to develop a meth...It is becoming an important social problem to make maintenance and rehabilitation of existing infrastructures such as bridges, buildings, etc. in the world. The kernel of such structure management is to develop a method of safety assessment on items<span style="font-family:;" "=""> </span><span style="font-family:;" "="">which include remaining life and load carrying capacity. The purpose of this paper is to summarize the finding of up-to-date research articles concerning the application of knowledge-based systems to assessment and management of structures and to illustrate the potential of such systems in the structural engineering. In here, knowledge-based systems include knowledge-based expert systems incorporation with artificial neural networks, fuzzy reasoning and genetic or immune algorithms.</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">Specifically, two modern bridge management systems (BMS’s) are presented in the paper. The first is a BMS to assess the performance and derive optimal strategies for inspection and maintenance of concrete bridge structures using reliability based and knowledge-based systems. The second is the concrete bridge rating expert system (<i>J-BMS BREX</i>) to evaluate the performance of existing bridges by incorporating with artificial neural networks and fuzzy reasoning.</span>展开更多
Compressive strength of concrete is a significant factor to assess building structure health and safety.Therefore,various methods have been developed to evaluate the compressive strength of concrete structures.However...Compressive strength of concrete is a significant factor to assess building structure health and safety.Therefore,various methods have been developed to evaluate the compressive strength of concrete structures.However,previous methods have several challenges in costly,time-consuming,and unsafety.To address these drawbacks,this paper proposed a digital vision based concrete compressive strength evaluating model using deep convolutional neural network(DCNN).The proposed model presented an alternative approach to evaluating the concrete strength and contributed to improving efficiency and accuracy.The model was developed with 4,000 digital images and 61,996 images extracted from video recordings collected from concrete samples.The experimental results indicated a root mean square error(RMSE)value of 3.56(MPa),demonstrating a strong feasibility that the proposed model can be utilized to predict the concrete strength with digital images of their surfaces and advantages to overcome the previous limitations.This experiment contributed to provide the basis that could be extended to future research with image analysis technique and artificial neural network in the diagnosis of concrete building structures.展开更多
文摘With the development of the science and technology of the computer application, the maintenance management and the security of the computers is an important problem. In this paper the author presents his own opinions on these issues. Therefore, the maintenance management of the computer local area network is very important to guarantee the security and stability of the network and to the use of the cyber sources to a maximum.
文摘It is becoming an important social problem to make maintenance and rehabilitation of existing infrastructures such as bridges, buildings, etc. in the world. The kernel of such structure management is to develop a method of safety assessment on items<span style="font-family:;" "=""> </span><span style="font-family:;" "="">which include remaining life and load carrying capacity. The purpose of this paper is to summarize the finding of up-to-date research articles concerning the application of knowledge-based systems to assessment and management of structures and to illustrate the potential of such systems in the structural engineering. In here, knowledge-based systems include knowledge-based expert systems incorporation with artificial neural networks, fuzzy reasoning and genetic or immune algorithms.</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">Specifically, two modern bridge management systems (BMS’s) are presented in the paper. The first is a BMS to assess the performance and derive optimal strategies for inspection and maintenance of concrete bridge structures using reliability based and knowledge-based systems. The second is the concrete bridge rating expert system (<i>J-BMS BREX</i>) to evaluate the performance of existing bridges by incorporating with artificial neural networks and fuzzy reasoning.</span>
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2018R1A2B6007333).
文摘Compressive strength of concrete is a significant factor to assess building structure health and safety.Therefore,various methods have been developed to evaluate the compressive strength of concrete structures.However,previous methods have several challenges in costly,time-consuming,and unsafety.To address these drawbacks,this paper proposed a digital vision based concrete compressive strength evaluating model using deep convolutional neural network(DCNN).The proposed model presented an alternative approach to evaluating the concrete strength and contributed to improving efficiency and accuracy.The model was developed with 4,000 digital images and 61,996 images extracted from video recordings collected from concrete samples.The experimental results indicated a root mean square error(RMSE)value of 3.56(MPa),demonstrating a strong feasibility that the proposed model can be utilized to predict the concrete strength with digital images of their surfaces and advantages to overcome the previous limitations.This experiment contributed to provide the basis that could be extended to future research with image analysis technique and artificial neural network in the diagnosis of concrete building structures.