In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML...In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.展开更多
A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC mac...A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.展开更多
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also...The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.展开更多
A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus...A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.展开更多
Reducing carbon emissions( CEs) is the urgent demand all over the world. In order to realize the low-carbon numerical control( NC) machining, the evaluation model of a part's manufacturing carbon emission with NC ...Reducing carbon emissions( CEs) is the urgent demand all over the world. In order to realize the low-carbon numerical control( NC) machining, the evaluation model of a part's manufacturing carbon emission with NC machine tools was built by considering the influences of the cutting tool geometrical parameters.The manufacturing CEs were produced by electric power,cutting tools,and cutting fluid consumed in manufacturing process. The parameters of cutting tools affected not only the CEs,but also the machining quality. Then the actual constraint models of the machine performance,machining quality were given in order to optimize the cutting parameters and achieve the low-CEs. Finally,a case was given to analyze the influences of the cutting tool angles on the manufacturing CEs. The results show that the CEs decrease as the rake angle and edge angle increase under the constraints of the machine specifications and machining quality.展开更多
The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron dis- charge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for th...The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron dis- charge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for the machining of JIS SKD61 (HRC 53), a widely used material in die/mold manufacturing, are investigated. The endmill shows a characteristic that tool life decreases greatly due to the chipping when overload occurs or the rapid increase of wear when over-heat accumulation in cutting edges. As a consequence of the investigation, a strategy to regulate heat generation in the end milling process is proposed. This is accomplished by controlling the cutting arc length, i.e. the length of each flute engaging workpiece in a cutting cycle. Case studies on the slot end milling and comer rounding are conducted. The results show that the proposed strategy suggests the optimal tool path as well as the optimal pitch between successive tool paths under the cutting time criterion.展开更多
With the development of modern information technology-and particularly of the new generation of artificial intelligence(AI)technology-new opportunities are available for the development of the intelligent machine tool...With the development of modern information technology-and particularly of the new generation of artificial intelligence(AI)technology-new opportunities are available for the development of the intelligent machine tool(IMT).Based on the three classical paradigms of intelligent manufacturing as defined by the Chinese Academy of Engineering,the concept,characteristics,and systemic structure of the IMT are presented in this paper.Three stages of machine tool evolution-from the manually operated machine tool(MOMT)to the IMT-are discussed,including the numerical control machine tool(NCMT),the smart machine tool(SMT),and the IMT.Furthermore,the four intelligent control principles of the IMT-namely,autonomous sensing and connection,autonomous learning and modeling,autonomous optimization and decision-making,and autonomous control and execution-are presented in detail.This paper then points out that the essential characteristic of the IMT is to acquire and accumulate knowledge through learning,and presents original key enabling technologies,including the instruction-domain-based analytical approach,theoretical and big-data-based hybrid modeling technology,and the double-code control method.Based on this research,an intelligent numerical control(INC)system and industrial prototypes of IMTs are developed.Three intelligent practices are conducted,demonstrating that the integration of the new generation of AI technology with advanced manufacturing technology is a feasible and convenient way to advance machine tools toward the IMT.展开更多
Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a C...Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.展开更多
As the foundation of an industrialized country nowadays,machine tools industry is regarded as the engine of industrial development of a country.The developed countries,such as USA,Germany and Japan,have widely deploye...As the foundation of an industrialized country nowadays,machine tools industry is regarded as the engine of industrial development of a country.The developed countries,such as USA,Germany and Japan,have widely deployed the technology of using the patent in order to keep their strength in various fields.This research examins the CNC machine tools industry in the world by using the patent analysis method.It first gives an overview about the world patent application in CNC machine tools industry from 1963 to 2010 and divides the development of the industry into five stages.It also lists the patent application of the world top 20 countries,where the top 5 countries are compared.The patents of the world top 10 companies of machine tools manufacturers are mapped according to the international patent classification(IPC),and the future trends of world machine tools industry are discussed.Finally conclusions and suggestions are presented.展开更多
This paper presents four patterns of reference-return positions for CNC machine tools and analyses some causes of return reference troubles by showing typical examples of trouble shooting.Finally,it introduces several...This paper presents four patterns of reference-return positions for CNC machine tools and analyses some causes of return reference troubles by showing typical examples of trouble shooting.Finally,it introduces several methods of trouble shooting.展开更多
A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control sys...A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated.展开更多
The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthe...The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability.展开更多
文摘In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.
文摘A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.
基金Project supported by National Natural Science Foundation of China(No. 50675199)the Science and Technology Project of Zhejiang Province (No. 2006C11067), China
文摘The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.
基金Project(2014ZX04014-011)supported by State Key Science&Technology Program of ChinaProject([2016]414)supported by the 13th Five-year Program of Education Department of Jilin Province,China
文摘A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.
基金Research Fund for the Doctoral Program of Higher Education of China(No.20122125120013)Scientific Research Fund of Liaoning Provincial Education Department,China(No.L2013206)the Fundamental Research Funds for the Central Universities,China(Nos.3132014303,3132015087)
文摘Reducing carbon emissions( CEs) is the urgent demand all over the world. In order to realize the low-carbon numerical control( NC) machining, the evaluation model of a part's manufacturing carbon emission with NC machine tools was built by considering the influences of the cutting tool geometrical parameters.The manufacturing CEs were produced by electric power,cutting tools,and cutting fluid consumed in manufacturing process. The parameters of cutting tools affected not only the CEs,but also the machining quality. Then the actual constraint models of the machine performance,machining quality were given in order to optimize the cutting parameters and achieve the low-CEs. Finally,a case was given to analyze the influences of the cutting tool angles on the manufacturing CEs. The results show that the CEs decrease as the rake angle and edge angle increase under the constraints of the machine specifications and machining quality.
文摘The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron dis- charge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for the machining of JIS SKD61 (HRC 53), a widely used material in die/mold manufacturing, are investigated. The endmill shows a characteristic that tool life decreases greatly due to the chipping when overload occurs or the rapid increase of wear when over-heat accumulation in cutting edges. As a consequence of the investigation, a strategy to regulate heat generation in the end milling process is proposed. This is accomplished by controlling the cutting arc length, i.e. the length of each flute engaging workpiece in a cutting cycle. Case studies on the slot end milling and comer rounding are conducted. The results show that the proposed strategy suggests the optimal tool path as well as the optimal pitch between successive tool paths under the cutting time criterion.
基金The authors would like to express special thanks to Prof.Ji Zhou from the Chinese Academy of Engineering.This paper is supported by the National Natural Science Foundation of China(51675204 and 51575210)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2018ZX04035002-002).
文摘With the development of modern information technology-and particularly of the new generation of artificial intelligence(AI)technology-new opportunities are available for the development of the intelligent machine tool(IMT).Based on the three classical paradigms of intelligent manufacturing as defined by the Chinese Academy of Engineering,the concept,characteristics,and systemic structure of the IMT are presented in this paper.Three stages of machine tool evolution-from the manually operated machine tool(MOMT)to the IMT-are discussed,including the numerical control machine tool(NCMT),the smart machine tool(SMT),and the IMT.Furthermore,the four intelligent control principles of the IMT-namely,autonomous sensing and connection,autonomous learning and modeling,autonomous optimization and decision-making,and autonomous control and execution-are presented in detail.This paper then points out that the essential characteristic of the IMT is to acquire and accumulate knowledge through learning,and presents original key enabling technologies,including the instruction-domain-based analytical approach,theoretical and big-data-based hybrid modeling technology,and the double-code control method.Based on this research,an intelligent numerical control(INC)system and industrial prototypes of IMTs are developed.Three intelligent practices are conducted,demonstrating that the integration of the new generation of AI technology with advanced manufacturing technology is a feasible and convenient way to advance machine tools toward the IMT.
基金support of the studies is from the National Major Scientific and Technological Special Project for "Development and comprehensive verification of complete products of open high-end CNC system, servo device and motor" (2012ZX04001012)
文摘Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.
基金Supported by Scientific Monitoring and Key Areas in-Depth Investigation and Research(No.ZD2012-4-2)Special Project of Scientific and Technological Basic Works(No.2009FY241000)Science and Technology Major Specific Project Core Electronic Elements,High-General Chips and Basic Software(No.2013XM01)
文摘As the foundation of an industrialized country nowadays,machine tools industry is regarded as the engine of industrial development of a country.The developed countries,such as USA,Germany and Japan,have widely deployed the technology of using the patent in order to keep their strength in various fields.This research examins the CNC machine tools industry in the world by using the patent analysis method.It first gives an overview about the world patent application in CNC machine tools industry from 1963 to 2010 and divides the development of the industry into five stages.It also lists the patent application of the world top 20 countries,where the top 5 countries are compared.The patents of the world top 10 companies of machine tools manufacturers are mapped according to the international patent classification(IPC),and the future trends of world machine tools industry are discussed.Finally conclusions and suggestions are presented.
文摘This paper presents four patterns of reference-return positions for CNC machine tools and analyses some causes of return reference troubles by showing typical examples of trouble shooting.Finally,it introduces several methods of trouble shooting.
文摘A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated.
基金the National Science and Technology Major Project of China(No.2014ZX04014-011)
文摘The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability.