Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate vario...Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate various computational tools,including machine learning,molecular dynamic simulation and physiologically based absorption modeling(PBAM),to enhance andrographolide(AG)/cyclodextrins(CDs)formulation design.The light GBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy.AG/γ-CD inclusion complexes showed the strongest binding affinity,which was experimentally validated by the phase solubility study.The molecular dynamic simulation was used to investigate the inclusion mechanism between AG andγ-CD,which was experimentally characterized by DSC,FTIR and NMR techniques.PBAM was applied to simulate the in vivo behavior of the formulations,which were validated by cell and animal experiments.Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate(TPGS)significantly increased the intracellular uptake of AG in MDCKMDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers.The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills,respectively.In conclusion,this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility,dissolution rate and bioavailability.The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.展开更多
A simulation tool named BITSIM orienting production engineering is developed in order to improve enterprise's productivity and making up the scarcity of computer application. The architecture of BITSIM is presented f...A simulation tool named BITSIM orienting production engineering is developed in order to improve enterprise's productivity and making up the scarcity of computer application. The architecture of BITSIM is presented first. Hierarchical technique, control strategy based on multi-agent and simulation output analysis are depicted in detail then. In the end, an application example is taken out to prove that this system could be used to analyzing different hypothetical situation and configuring the auxiliary manufacturing system before production.展开更多
In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint....In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.This study explored the potential application of coir fiber-reinforced laterite soil-bottom ash mixtures as embankment materials in the tropics.The objective is to enhance engineered embankment slopes'erosion resistance and stability while offering reuse options for industrial byproducts.This study examined various mix designs for unconfined compressive strength(UCS)and permeability,utilizing 30%bottom ash(BA)and 1%coir fiber(CF)with varying sizes ranging from 10 to 40 mm,6%lime,and laterite soil(LS),followed by microstructural analyses.The results demonstrate that the compressive strength increases as the CF length increases to 25 mm.In contrast,permeability increases continuously with increasing CF length.Lime-treated mixtures exhibit superior short-and long-term strength and reduce permeability owing to the formation of cementitious materials,as confirmed by microstructural analyses.A lab-scale slope box was constructed to evaluate the surface erosion of the stabilized laterite soil embankment.Based on the rainfall simulation results,the LS-BA-CF mixtures show better resistance to erosion and deformation compared to untreated LS,especially when lime is added to the top layer.This study provides insights into a sustainable and cost-effective approach for slope stabilization using BA and CF,offering a promising solution for tropical regions susceptible to surface erosion and landslides.展开更多
Most existing treatments for origami-folding simulations have focused on regular-shaped configurations.This article aims to introduce a general strategy for simulating and analyzing the deformation process of irregula...Most existing treatments for origami-folding simulations have focused on regular-shaped configurations.This article aims to introduce a general strategy for simulating and analyzing the deformation process of irregular shapes by means of computational capabilities nowadays.To better simulate origami deformation with folding orders,the concept of plane follow-up is introduced to achieve automated computer simulation of complex folding patterns,thereby avoiding intersection and penetration between planes.Based on the evaluation criteria such as the lowest storage energy with tightening and the fastest pace from tightening to unfolding,the optimal crease distribution patterns for four irregular(‘N’-,‘T’-,‘O’-,and‘P’-shaped)origami configurations are then presented under five candidates.When the dimensions of the origami are fixed,it is discovered that simpler folding patterns lead to faster deformation of the origami configuration.When the folding complexity is fixed,higher strain energy results in more rapid origami expansion.展开更多
This paper presents an investigation into the impact of proton-induced alteration of carrier lifetime on the singleevent transient(SET) caused by heavy ions in silicon–germanium heterojunction bipolar transistor(SiGe...This paper presents an investigation into the impact of proton-induced alteration of carrier lifetime on the singleevent transient(SET) caused by heavy ions in silicon–germanium heterojunction bipolar transistor(SiGe HBT).The ioninduced current transients and integrated charge collections under different proton fluences are obtained based on technology computer-aided design(TCAD) simulation.The results indicate that the impact of carrier lifetime alteration is determined by the dominating charge collection mechanism at the ion incident position and only the long-time diffusion process is affected.With a proton fluence of 5 × 1013 cm-2, almost no change is found in the transient feature, and the charge collection of events happened in the region enclosed by deep trench isolation(DTI), where prompt funneling collection is the dominating mechanism.Meanwhile, for the events happening outside DTI where diffusion dominates the collection process, the peak value and the duration of the ion-induced current transient both decrease with increasing proton fluence, leading to a great decrease in charge collection.展开更多
This paper describes the titanium forging processes a pplied in the golf club head forgings. Generally speaking, titanium has poor for geability and therefore the threshold to invest in the titanium forging operatio n...This paper describes the titanium forging processes a pplied in the golf club head forgings. Generally speaking, titanium has poor for geability and therefore the threshold to invest in the titanium forging operatio n is high. Process parameters have been discussed and computer simulation on the forging processes has been conducted and compared with the forging practices. N ormally, titanium rod was preferred billet on titanium golf club head forging, w hich is the case on iron head, but it is not appropriate on wood head because of its large hollow volume. Therefore, a study on wood head forging from titanium plate has been explored and simulation of the forging processes have been conduc ted and shown reasonable results. DEFORM software has been adopted in the study of the forging processes simulation on the titanium golf head forging simulation . Some successful results will be demonstrated in this paper.展开更多
基金financially supported by the FDCT Project 0029/2018/A1the University of Macao Research Grants(MYRG2019-00041-ICMS)performed in part at the High-Performance Computing Cluster(HPCC)which is supported by Information and Communication Technology Office(ICTO)of the University of Macao。
文摘Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate various computational tools,including machine learning,molecular dynamic simulation and physiologically based absorption modeling(PBAM),to enhance andrographolide(AG)/cyclodextrins(CDs)formulation design.The light GBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy.AG/γ-CD inclusion complexes showed the strongest binding affinity,which was experimentally validated by the phase solubility study.The molecular dynamic simulation was used to investigate the inclusion mechanism between AG andγ-CD,which was experimentally characterized by DSC,FTIR and NMR techniques.PBAM was applied to simulate the in vivo behavior of the formulations,which were validated by cell and animal experiments.Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate(TPGS)significantly increased the intracellular uptake of AG in MDCKMDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers.The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills,respectively.In conclusion,this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility,dissolution rate and bioavailability.The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.
文摘A simulation tool named BITSIM orienting production engineering is developed in order to improve enterprise's productivity and making up the scarcity of computer application. The architecture of BITSIM is presented first. Hierarchical technique, control strategy based on multi-agent and simulation output analysis are depicted in detail then. In the end, an application example is taken out to prove that this system could be used to analyzing different hypothetical situation and configuring the auxiliary manufacturing system before production.
文摘In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.This study explored the potential application of coir fiber-reinforced laterite soil-bottom ash mixtures as embankment materials in the tropics.The objective is to enhance engineered embankment slopes'erosion resistance and stability while offering reuse options for industrial byproducts.This study examined various mix designs for unconfined compressive strength(UCS)and permeability,utilizing 30%bottom ash(BA)and 1%coir fiber(CF)with varying sizes ranging from 10 to 40 mm,6%lime,and laterite soil(LS),followed by microstructural analyses.The results demonstrate that the compressive strength increases as the CF length increases to 25 mm.In contrast,permeability increases continuously with increasing CF length.Lime-treated mixtures exhibit superior short-and long-term strength and reduce permeability owing to the formation of cementitious materials,as confirmed by microstructural analyses.A lab-scale slope box was constructed to evaluate the surface erosion of the stabilized laterite soil embankment.Based on the rainfall simulation results,the LS-BA-CF mixtures show better resistance to erosion and deformation compared to untreated LS,especially when lime is added to the top layer.This study provides insights into a sustainable and cost-effective approach for slope stabilization using BA and CF,offering a promising solution for tropical regions susceptible to surface erosion and landslides.
基金supported by the National Natural Science Foundation of China 11821202(Xu Guo)the National Key Research and Development Plan 2020YFB1709401(Xu Guo)the Liaoning Revitalization Talents Program XLYC2001003(Xu Guo)。
文摘Most existing treatments for origami-folding simulations have focused on regular-shaped configurations.This article aims to introduce a general strategy for simulating and analyzing the deformation process of irregular shapes by means of computational capabilities nowadays.To better simulate origami deformation with folding orders,the concept of plane follow-up is introduced to achieve automated computer simulation of complex folding patterns,thereby avoiding intersection and penetration between planes.Based on the evaluation criteria such as the lowest storage energy with tightening and the fastest pace from tightening to unfolding,the optimal crease distribution patterns for four irregular(‘N’-,‘T’-,‘O’-,and‘P’-shaped)origami configurations are then presented under five candidates.When the dimensions of the origami are fixed,it is discovered that simpler folding patterns lead to faster deformation of the origami configuration.When the folding complexity is fixed,higher strain energy results in more rapid origami expansion.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775167,61574171,11575138,and 11835006)
文摘This paper presents an investigation into the impact of proton-induced alteration of carrier lifetime on the singleevent transient(SET) caused by heavy ions in silicon–germanium heterojunction bipolar transistor(SiGe HBT).The ioninduced current transients and integrated charge collections under different proton fluences are obtained based on technology computer-aided design(TCAD) simulation.The results indicate that the impact of carrier lifetime alteration is determined by the dominating charge collection mechanism at the ion incident position and only the long-time diffusion process is affected.With a proton fluence of 5 × 1013 cm-2, almost no change is found in the transient feature, and the charge collection of events happened in the region enclosed by deep trench isolation(DTI), where prompt funneling collection is the dominating mechanism.Meanwhile, for the events happening outside DTI where diffusion dominates the collection process, the peak value and the duration of the ion-induced current transient both decrease with increasing proton fluence, leading to a great decrease in charge collection.
文摘This paper describes the titanium forging processes a pplied in the golf club head forgings. Generally speaking, titanium has poor for geability and therefore the threshold to invest in the titanium forging operatio n is high. Process parameters have been discussed and computer simulation on the forging processes has been conducted and compared with the forging practices. N ormally, titanium rod was preferred billet on titanium golf club head forging, w hich is the case on iron head, but it is not appropriate on wood head because of its large hollow volume. Therefore, a study on wood head forging from titanium plate has been explored and simulation of the forging processes have been conduc ted and shown reasonable results. DEFORM software has been adopted in the study of the forging processes simulation on the titanium golf head forging simulation . Some successful results will be demonstrated in this paper.