期刊文献+
共找到777,543篇文章
< 1 2 250 >
每页显示 20 50 100
3D printed nerve guidance channels: computer-aided control of geometry, physical cues, biological supplements and gradients 被引量:2
1
作者 Blake N.Johnson Xiaofeng Jia 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1568-1569,共2页
Nerve guidance channels for peripheral nerve injury: Over the past decade, nerve guidance channels (NGCs) have emerged as a promising technology for regenerating gap injuries in peripheral nerves. Nerve gap injurie... Nerve guidance channels for peripheral nerve injury: Over the past decade, nerve guidance channels (NGCs) have emerged as a promising technology for regenerating gap injuries in peripheral nerves. Nerve gap injuries resulting from neurodegeneration and trauma, such as car accidents and battlefield wounds, affect hun- dreds of thousands of people annually. Motivated by suboptimal results obtained with the current gold standard of autologous grafting (i.e., autografts), various commercially available NGCs composed of synthetic and biomaterials are now alternatively available (Jia et al., 2014; Jones et al., 2016). 展开更多
关键词 NGC physical cues printed nerve guidance channels biological supplements and gradients computer-aided control of geometry
下载PDF
Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression
2
作者 Hassen Louati Ali Louati +1 位作者 Elham Kariri Slim Bechikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2519-2547,共29页
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w... Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures. 展开更多
关键词 computer-aided diagnosis deep learning evolutionary algorithms deep compression transfer learning
下载PDF
Computer-Aided Diagnosis Model Using Machine Learning for Brain Tumor Detection and Classification 被引量:1
3
作者 M.Uvaneshwari M.Baskar 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1811-1826,共16页
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring ... The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods. 展开更多
关键词 Brain tumor machine learning SEGMENTATION computer-aided diagnosis skull stripping
下载PDF
Computer-Aided Diagnosis for Tuberculosis Classification with Water Strider Optimization Algorithm 被引量:1
4
作者 José Escorcia-Gutierrez Roosvel Soto-Diaz +4 位作者 Natasha Madera Carlos Soto Francisco Burgos-Florez Alexander Rodríguez Romany F.Mansour 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1337-1353,共17页
Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screenin... Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms. 展开更多
关键词 computer-aided diagnosis water strider optimization deep learning chest x-rays transfer learning
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:2
5
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Vibration Control of A Flexible Marine Riser System Subject to Input Dead Zone and Extraneous Disturbances 被引量:1
6
作者 ZHOU Li WANG Guo-rong WAN Min 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期271-284,共14页
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control... An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller. 展开更多
关键词 adaptive backstepping control disturbance observer flexible marine riser input dead zone vibration control
下载PDF
Novel Computer-Aided Diagnosis System for the Early Detection of Alzheimer’s Disease
7
作者 Meshal Alharbi Shabana R.Ziyad 《Computers, Materials & Continua》 SCIE EI 2023年第3期5483-5505,共23页
Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to f... Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to fulfill basic daily needs.AD is the major cause of dementia.Computer-aided diagnosis(CADx)tools aid medical practitioners in accurately identifying diseases such as AD in patients.This study aimed to develop a CADx tool for the early detection of AD using the Intelligent Water Drop(IWD)algorithm and the Random Forest(RF)classifier.The IWD algorithm an efficient feature selection method,was used to identify the most deterministic features of AD in the dataset.RF is an ensemble method that leverages multiple weak learners to classify a patient’s disease as either demented(DN)or cognitively normal(CN).The proposed tool also classifies patients as mild cognitive impairment(MCI)or CN.The dataset on which the performance of the proposed CADx was evaluated was sourced from the Alzheimer’s Disease Neuroimaging Initiative(ADNI).The RF ensemble method achieves 100%accuracy in identifying DN patients from CN patients.The classification accuracy for classifying patients as MCI or CN is 92%.This study emphasizes the significance of pre-processing prior to classification to improve the classification results of the proposed CADx tool. 展开更多
关键词 Alzheimer’s disease DEMENTIA mild cognitive impairment computer-aided diagnosis intelligent water drop algorithm random forest
下载PDF
Control of highly pathogenic avian influenza through vaccination 被引量:1
8
作者 Xianying Zeng Jianzhong Shi Hualan Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1447-1453,共7页
The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian in... The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian influenza virus in vaccinated birds would evolve more rapidly and pose a greater risk to humans.In this review,we summarize the successes in controlling highly pathogenic avian influenza in China and make suggestions regarding the requirements for vaccine selection and effectiveness.In addition,we present evidence that vaccination of poultry not only eliminates human infection with avian influenza virus,but also significantly reduces and abolishes some harmful characteristics of avian influenza virus. 展开更多
关键词 avian influenza control highly pathogenic VACCINATION
下载PDF
Pre-Trained Deep Neural Network-Based Computer-Aided Breast Tumor Diagnosis Using ROI Structures
9
作者 Venkata Sunil Srikanth S.Krithiga 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期63-78,共16页
Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives train... Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives training feature samples that make closer isolation toward the infection part.Hence,it is expensive due to a metaheuristic search of features occupying the global region of interest(ROI)structures of input images.Thus,it may lead to the high computational complexity of the pre-trained DNN-based CABTD method.This paper proposes a novel ensemble pretrained DNN-based CABTD method using global-and local-ROI-structures of B-mode ultrasound images.It conveys the additional consideration of a local-ROI-structures for further enhan-cing the pretrained DNN-based CABTD method’s breast tumor diagnostic performance without degrading its visual quality.The features are extracted at various depths(18,50,and 101)from the global and local ROI structures and feed to support vector machine for better classification.From the experimental results,it has been observed that the combined local and global ROI structure of small depth residual network ResNet18(0.8 in%)has produced significant improve-ment in pixel ratio as compared to ResNet50(0.5 in%)and ResNet101(0.3 in%),respectively.Subsequently,the pretrained DNN-based CABTD methods have been tested by influencing local and global ROI structures to diagnose two specific breast tumors(Benign and Malignant)and improve the diagnostic accuracy(86%)compared to Dense Net,Alex Net,VGG Net,and Google Net.Moreover,it reduces the computational complexity due to the small depth residual network ResNet18,respectively. 展开更多
关键词 computer-aided diagnosis breast tumor B-mode ultrasound images deep neural network local-ROI-structures feature extraction support vector machine
下载PDF
A Blockchain-Based Access Control Scheme for Reputation Value Attributes of the Internet of Things 被引量:1
10
作者 Hongliang Tian Junyuan Tian 《Computers, Materials & Continua》 SCIE EI 2024年第1期1297-1310,共14页
The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access cont... The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access control scheme is proposed.Firstly,writing the reputation value as an attribute into the access control policy,and then deploying the access control policy in the smart contract of the blockchain system can enable the system to provide more fine-grained access control;Secondly,storing a large amount of resources fromthe Internet of Things in Inter Planetary File System(IPFS)to improve system throughput;Finally,map resource access operations to qualification tokens to improve the performance of the access control system.Complete simulation experiments based on the Hyperledger Fabric platform.Fromthe simulation experimental results,it can be seen that the access control system can achieve more fine-grained and dynamic access control while maintaining high throughput and low time delay,providing sufficient reliability and security for access control of IoT devices. 展开更多
关键词 Blockchain IOT access control Hyperledger Fabric
下载PDF
Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage 被引量:4
11
作者 Jiatong Zhang Qi Zhu +4 位作者 Jie Wang Zheng Peng Zong Zhuang Chunhua Hang Wei Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期825-832,共8页
The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct facto... The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct factors such as ischemia,hypoxia,excitotoxicity,and toxicity of free hemoglobin and its degradation products,which trigger mitochondrial dysfunction.Dysfunctional mitochondria release large amounts of reactive oxygen species,inflammatory mediators,and apoptotic proteins that activate apoptotic pathways,further damaging cells.In response to this array of damage,cells have adopted multiple mitochondrial quality control mechanisms through evolution,including mitochondrial protein quality control,mitochondrial dynamics,mitophagy,mitochondrial biogenesis,and intercellular mitochondrial transfer,to maintain mitochondrial homeostasis under pathological conditions.Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage.This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage,particularly mitochondrial quality control mechanisms.It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage. 展开更多
关键词 mitochondrial biogenesis mitochondrial dynamics mitochondrial dysfunction mitochondrial fission and fusion mitochondrial quality control MITOPHAGY subarachnoid hemorrhage
下载PDF
A Review on Vibration Control of Multiple Cylinders Subjected to FlowInduced Vibrations 被引量:1
12
作者 XU Wan-hai MA Ye-xuan 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期183-197,共15页
The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of ... The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods. 展开更多
关键词 flow-induced vibration vibration control multiple cylinders TANDEM side-by-side staggered
下载PDF
Framework for a Computer-Aided Treatment Prediction (CATP) System for Breast Cancer
13
作者 Emad Abd Al Rahman Nur Intan Raihana Ruhaiyem +1 位作者 Majed Bouchahma Kamarul Imran Musa 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3007-3028,共22页
This study offers a framework for a breast cancer computer-aided treat-ment prediction(CATP)system.The rising death rate among women due to breast cancer is a worldwide health concern that can only be addressed by ear... This study offers a framework for a breast cancer computer-aided treat-ment prediction(CATP)system.The rising death rate among women due to breast cancer is a worldwide health concern that can only be addressed by early diagno-sis and frequent screening.Mammography has been the most utilized breast ima-ging technique to date.Radiologists have begun to use computer-aided detection and diagnosis(CAD)systems to improve the accuracy of breast cancer diagnosis by minimizing human errors.Despite the progress of artificial intelligence(AI)in the medical field,this study indicates that systems that can anticipate a treatment plan once a patient has been diagnosed with cancer are few and not widely used.Having such a system will assist clinicians in determining the optimal treatment plan and avoid exposing a patient to unnecessary hazardous treatment that wastes a significant amount of money.To develop the prediction model,data from 336,525 patients from the SEER dataset were split into training(80%),and testing(20%)sets.Decision Trees,Random Forest,XGBoost,and CatBoost are utilized with feature importance to build the treatment prediction model.The best overall Area Under the Curve(AUC)achieved was 0.91 using Random Forest on the SEER dataset. 展开更多
关键词 BREASTCANCER MACHINELEARNING featureimportance FEATURESELECTION treatment prediction SEER dataset computer-aided treatment prediction(CATP) clinical decision support system
下载PDF
A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic 被引量:1
14
作者 Junyao Ji Xinao Ji +5 位作者 Ziyu Zhou Zhichao Dai Xuhui Chen Jie Zhang Zheng Jiang Hong Zhang 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期3-12,共10页
This paper presents a 16-bit,18-MSPS(million samples per second)flash-assisted successive-approximation-register(SAR)analog-to-digital converter(ADC)utilizing hybrid synchronous and asynchronous(HYSAS)timing control l... This paper presents a 16-bit,18-MSPS(million samples per second)flash-assisted successive-approximation-register(SAR)analog-to-digital converter(ADC)utilizing hybrid synchronous and asynchronous(HYSAS)timing control logic based on an on-chip delay-locked loop(DLL).The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter(CDAC)than the synchronous and asynchronous SAR ADC.Therefore,the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent.In addition,the fore-ground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter(FIR-BPF)based least-mean-square(LMS)algorithm in an off-chip FPGA(field programmable gate array).Fabricated in 40-nm CMOS process,the proto-type ADC achieves 94.02-dB spurious-free dynamic range(SFDR),and 75.98-dB signal-to-noise-and-distortion ratio(SNDR)for a 2.88-MHz input under 18-MSPS sampling rate. 展开更多
关键词 SAR ADC control logic reference ringing DAC incomplete settling
下载PDF
Communication Resource-Efficient Vehicle Platooning Control With Various Spacing Policies 被引量:2
15
作者 Xiaohua Ge Qing-Long Han +1 位作者 Xian-Ming Zhang Derui Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期362-376,共15页
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha... Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results. 展开更多
关键词 Automated vehicles constant time headway spacing constant spacing cooperative adaptive cruise control event-triggered communication vehicle platooning
下载PDF
Path Planning and Tracking Control for Parking via Soft Actor-Critic Under Non-Ideal Scenarios 被引量:1
16
作者 Xiaolin Tang Yuyou Yang +3 位作者 Teng Liu Xianke Lin Kai Yang Shen Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期181-195,共15页
Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adja... Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees. 展开更多
关键词 Automatic parking control strategy parking deviation(APS) soft actor-critic(SAC)
下载PDF
A Tutorial on Quantized Feedback Control
17
作者 Minyue Fu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期5-17,共13页
In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of ... In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements. 展开更多
关键词 Consensus control high-precision control networked control quantized estimation quantized feedback control robust control
下载PDF
Risk-Informed Model-Free Safe Control of Linear Parameter-Varying Systems
18
作者 Babak Esmaeili Hamidreza Modares 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1918-1932,共15页
This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)syste... This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach. 展开更多
关键词 Data-driven control linear parameter-varying systems probabilistic control safe control
下载PDF
Finite-time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems With Non-Strict Feedback Based on a Neural Network Observer
19
作者 Chi Ma Dianbiao Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1039-1050,共12页
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli... This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. 展开更多
关键词 Finite-time control multi-agent systems neural network prescribed performance control time-varying formation control
下载PDF
Quantization and Event-Triggered Policy Design for Encrypted Networked Control
20
作者 Yongxia Shi Ehsan Nekouei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期946-955,共10页
This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-trigger... This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results. 展开更多
关键词 Cyber-security encrypted control event-triggered control(ETC) networked control systems(NCSs) semi-homomorphic encryption
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部