期刊文献+
共找到3,253篇文章
< 1 2 163 >
每页显示 20 50 100
Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression
1
作者 Hassen Louati Ali Louati +1 位作者 Elham Kariri Slim Bechikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2519-2547,共29页
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w... Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures. 展开更多
关键词 computer-aided diagnosis deep learning evolutionary algorithms deep compression transfer learning
下载PDF
Automatic Fetal Segmentation Designed on Computer-Aided Detection with Ultrasound Images
2
作者 Mohana Priya Govindarajan Sangeetha Subramaniam Karuppaiya Bharathi 《Computers, Materials & Continua》 SCIE EI 2024年第11期2967-2986,共20页
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of pregnancy.The HC might be ut... In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of pregnancy.The HC might be utilized toward determining gestational age and tracking fetal development.This automated approach is particularly valuable in low-resource settings where access to trained sonographers is limited.The CAD system is divided into two steps:to begin,Haar-like characteristics were extracted from ultrasound pictures in order to train a classifier using random forests to find the fetal skull.We identified the HC using dynamic programming,an elliptical fit,and a Hough transform.The computer-aided detection(CAD)program was well-trained on 999 pictures(HC18 challenge data source),and then verified on 335 photos from all trimesters in an independent test set.A skilled sonographer and an expert in medicine personally marked the test set.We used the crown-rump length(CRL)measurement to calculate the reference gestational age(GA).In the first,second,and third trimesters,the median difference between the standard GA and the GA calculated by the skilled sonographer stayed at 0.7±2.7,0.0±4.5,and 2.0±12.0 days,respectively.The regular duration variance between the baseline GA and the health investigator’s GA remained 1.5±3.0,1.9±5.0,and 4.0±14 a couple of days.The mean variance between the standard GA and the CAD system’s GA remained between 0.5 and 5.0,with an additional variation of 2.9 to 12.5 days.The outcomes reveal that the computer-aided detection(CAD)program outperforms an expert sonographer.When paired with the classifications reported in the literature,the provided system achieves results that are comparable or even better.We have assessed and scheduled this computerized approach for HC evaluation,which includes information from all trimesters of gestation. 展开更多
关键词 Fetal growth SEGMENTATION ultrasound images computer-aided detection gestational age crown-rump length head circumference
下载PDF
Effects of Furniture Ergonomics on Student’s Satisfaction in a Library Facility
3
作者 Dodo Mansir 《Journal of Civil Engineering and Architecture》 2024年第8期384-393,共10页
Building occupants are not immune to ill-health as a result of time they spend in a building.This paper seeks to examine the effects furniture ergonomics have on student’s satisfaction in the library of Universiti Te... Building occupants are not immune to ill-health as a result of time they spend in a building.This paper seeks to examine the effects furniture ergonomics have on student’s satisfaction in the library of Universiti Teknologi Malaysia.A pilot survey was initially conducted in the library through a one-to-one interaction with students to fetch their opinions on the general effects of the furniture.An observation through several walkthroughs was also conducted by the researchers to compare and validate responses obtained.Two hundred and sixty-five students that come from fifteen nationalities are surveyed.A structured questionnaire is used to collect data on the respondents’opinions on the size,shape,arrangement and comfort of the furniture.Eta cross tabulation,Spearman’s rho and Kendall’s Tau-b are used to establish relationships.Results show that amongst the effects studied,there are significant positive relationships between students’satisfaction of furniture ergonomics as against back-strain and lack of concentration.This implies that the more the furniture arrangements,size and shape are perceived unsatisfactory,the more their effects on back-strain and lack of concentration towards the students.This paper further recommends that library management should see to designing IEQ(Indoor Environmental Quality)guidelines that will mitigate the effects of furniture ergonomics thus improving student’s satisfaction. 展开更多
关键词 ergonomics FURNITURE LIBRARY SATISFACTION STUDENTS
下载PDF
Research on the Construction of a Comprehensive Teaching Case Library for Ergonomics under the OBE Concept
4
作者 Haiyan Tang Wenting Ni 《Journal of Contemporary Educational Research》 2024年第10期29-34,共6页
In recent years,case-based teaching has become a hot spot in higher education reform,and the construction of case libraries has received increasing attention.The development of teaching case libraries not only promote... In recent years,case-based teaching has become a hot spot in higher education reform,and the construction of case libraries has received increasing attention.The development of teaching case libraries not only promotes changes in talent training models but also enhances teaching effectiveness.Taking the ergonomics course as an example,this paper explores the construction of a comprehensive teaching case library for ergonomics under the outcome-based education concept,providing a reference for future ergonomics teaching case library development. 展开更多
关键词 Outcome-based education concept ergonomics Comprehensive teaching case library
下载PDF
Computer-Aided Diagnosis for Tuberculosis Classification with Water Strider Optimization Algorithm 被引量:1
5
作者 José Escorcia-Gutierrez Roosvel Soto-Diaz +4 位作者 Natasha Madera Carlos Soto Francisco Burgos-Florez Alexander Rodríguez Romany F.Mansour 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1337-1353,共17页
Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screenin... Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms. 展开更多
关键词 computer-aided diagnosis water strider optimization deep learning chest x-rays transfer learning
下载PDF
Computer-Aided Diagnosis Model Using Machine Learning for Brain Tumor Detection and Classification 被引量:1
6
作者 M.Uvaneshwari M.Baskar 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1811-1826,共16页
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring ... The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods. 展开更多
关键词 Brain tumor machine learning SEGMENTATION computer-aided diagnosis skull stripping
下载PDF
Novel Computer-Aided Diagnosis System for the Early Detection of Alzheimer’s Disease
7
作者 Meshal Alharbi Shabana R.Ziyad 《Computers, Materials & Continua》 SCIE EI 2023年第3期5483-5505,共23页
Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to f... Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to fulfill basic daily needs.AD is the major cause of dementia.Computer-aided diagnosis(CADx)tools aid medical practitioners in accurately identifying diseases such as AD in patients.This study aimed to develop a CADx tool for the early detection of AD using the Intelligent Water Drop(IWD)algorithm and the Random Forest(RF)classifier.The IWD algorithm an efficient feature selection method,was used to identify the most deterministic features of AD in the dataset.RF is an ensemble method that leverages multiple weak learners to classify a patient’s disease as either demented(DN)or cognitively normal(CN).The proposed tool also classifies patients as mild cognitive impairment(MCI)or CN.The dataset on which the performance of the proposed CADx was evaluated was sourced from the Alzheimer’s Disease Neuroimaging Initiative(ADNI).The RF ensemble method achieves 100%accuracy in identifying DN patients from CN patients.The classification accuracy for classifying patients as MCI or CN is 92%.This study emphasizes the significance of pre-processing prior to classification to improve the classification results of the proposed CADx tool. 展开更多
关键词 Alzheimer’s disease DEMENTIA mild cognitive impairment computer-aided diagnosis intelligent water drop algorithm random forest
下载PDF
Pre-Trained Deep Neural Network-Based Computer-Aided Breast Tumor Diagnosis Using ROI Structures
8
作者 Venkata Sunil Srikanth S.Krithiga 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期63-78,共16页
Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives train... Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives training feature samples that make closer isolation toward the infection part.Hence,it is expensive due to a metaheuristic search of features occupying the global region of interest(ROI)structures of input images.Thus,it may lead to the high computational complexity of the pre-trained DNN-based CABTD method.This paper proposes a novel ensemble pretrained DNN-based CABTD method using global-and local-ROI-structures of B-mode ultrasound images.It conveys the additional consideration of a local-ROI-structures for further enhan-cing the pretrained DNN-based CABTD method’s breast tumor diagnostic performance without degrading its visual quality.The features are extracted at various depths(18,50,and 101)from the global and local ROI structures and feed to support vector machine for better classification.From the experimental results,it has been observed that the combined local and global ROI structure of small depth residual network ResNet18(0.8 in%)has produced significant improve-ment in pixel ratio as compared to ResNet50(0.5 in%)and ResNet101(0.3 in%),respectively.Subsequently,the pretrained DNN-based CABTD methods have been tested by influencing local and global ROI structures to diagnose two specific breast tumors(Benign and Malignant)and improve the diagnostic accuracy(86%)compared to Dense Net,Alex Net,VGG Net,and Google Net.Moreover,it reduces the computational complexity due to the small depth residual network ResNet18,respectively. 展开更多
关键词 computer-aided diagnosis breast tumor B-mode ultrasound images deep neural network local-ROI-structures feature extraction support vector machine
下载PDF
Framework for a Computer-Aided Treatment Prediction (CATP) System for Breast Cancer
9
作者 Emad Abd Al Rahman Nur Intan Raihana Ruhaiyem +1 位作者 Majed Bouchahma Kamarul Imran Musa 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3007-3028,共22页
This study offers a framework for a breast cancer computer-aided treat-ment prediction(CATP)system.The rising death rate among women due to breast cancer is a worldwide health concern that can only be addressed by ear... This study offers a framework for a breast cancer computer-aided treat-ment prediction(CATP)system.The rising death rate among women due to breast cancer is a worldwide health concern that can only be addressed by early diagno-sis and frequent screening.Mammography has been the most utilized breast ima-ging technique to date.Radiologists have begun to use computer-aided detection and diagnosis(CAD)systems to improve the accuracy of breast cancer diagnosis by minimizing human errors.Despite the progress of artificial intelligence(AI)in the medical field,this study indicates that systems that can anticipate a treatment plan once a patient has been diagnosed with cancer are few and not widely used.Having such a system will assist clinicians in determining the optimal treatment plan and avoid exposing a patient to unnecessary hazardous treatment that wastes a significant amount of money.To develop the prediction model,data from 336,525 patients from the SEER dataset were split into training(80%),and testing(20%)sets.Decision Trees,Random Forest,XGBoost,and CatBoost are utilized with feature importance to build the treatment prediction model.The best overall Area Under the Curve(AUC)achieved was 0.91 using Random Forest on the SEER dataset. 展开更多
关键词 BREASTCANCER MACHINELEARNING featureimportance FEATURESELECTION treatment prediction SEER dataset computer-aided treatment prediction(CATP) clinical decision support system
下载PDF
虚拟装配中DELMIA/Ergonomics的应用研究 被引量:10
10
作者 吴维江 《科技资讯》 2008年第19期14-15,共2页
介绍了虚拟装配以及DELMIA/Ergonomics模块功能。应用DELMIA/Ergonomics引入了人体模型;通过调整人体模型尺寸及其姿态并结合人机工程学对装配工具进行尺寸修改设计;结合虚拟装配技术,对装配模型进行虚拟装配,从而检验了装配模型的装配... 介绍了虚拟装配以及DELMIA/Ergonomics模块功能。应用DELMIA/Ergonomics引入了人体模型;通过调整人体模型尺寸及其姿态并结合人机工程学对装配工具进行尺寸修改设计;结合虚拟装配技术,对装配模型进行虚拟装配,从而检验了装配模型的装配可达性,体现了人机工程学在虚拟装配中的作用。 展开更多
关键词 虚拟装配 DELMIA/ergonomics 人体模型 装配模型 装配可达性 人机工程学
下载PDF
Computer-Aided Translation Technology and Translation Teaching 被引量:1
11
作者 王红艾 《海外英语》 2011年第15期158-159,161,共3页
With the development of computer technology, Computer-Aided Translation(CAT) is widely used in the translation process, thus increasing the efficiency of the entire translation work. The purpose of this article is to ... With the development of computer technology, Computer-Aided Translation(CAT) is widely used in the translation process, thus increasing the efficiency of the entire translation work. The purpose of this article is to analyze the importance of introducing CAT technology into translation teaching and explore some ways of integrating CAT technology with translation teaching, so as to improve the quality of the translators and the translation work. 展开更多
关键词 computer-aided TRANSLATION TRANSLATION TEACHING TRANSLATION EFFICIENCY
下载PDF
Computer-aided Translation Technology and Its Applications
12
作者 汪美侠 何大顺 《海外英语》 2014年第5X期170-172,共3页
This article begins with a brief analysis of the significance of translation technology in different spheres of modern life,followed by a distinction between machine translation(MT)and computer-aided translation(CAT).... This article begins with a brief analysis of the significance of translation technology in different spheres of modern life,followed by a distinction between machine translation(MT)and computer-aided translation(CAT).It then describes some translation resources and tools and examines the negative and positive aspects of computer-aided translations.Finally it comes to a conclusion that it would be greatly efficient and productive for the translators to acquire the new skills in the translation workplace. 展开更多
关键词 MACHINE TRANSLATION computer-aided TRANSLATION APP
下载PDF
The computer-aided design method of cabinet based on style imagery 被引量:2
13
作者 沈张帆 薛澄岐 +3 位作者 王海燕 牛亚峰 邵将 张晶 《Journal of Southeast University(English Edition)》 EI CAS 2015年第3期369-374,共6页
Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle... Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle of the conjoint analysis method, the rough set theory and the weight coefficient of different components of the cabinet,a multi-dimensional model of style imagery to evaluate the cabinet is built. Then the related constants of style imagery are calculated and the cabinet components library is also built by the three-dimensional modeling.Finally,with recombinant technology and the mapping model between cabinet style and external characteristics,the prototype system based on Visual Studio is proposed.This system actualizes the bidirectional reasoning between product style imagery and the shape features,which can assist designers to produce more creative designs,greatly improve the efficiency of cabinet development and increase the profits of companies. 展开更多
关键词 CABINET computer-aided design style imagery component recombinant shape features
下载PDF
Clinical outcomes and ergonomics analysis of three laparoscopic techniques for Hirschsprung's disease 被引量:6
14
作者 Tajammool Hussein Aubdoollah Kang Li +8 位作者 Xi Zhang Shuai Li Li Yang Hai-Yan Lei Ponnie Robertlee Dolo Xian-Cai Xiang Guo-Qing Cao Guo-Bin Wang Shao-Tao Tang 《World Journal of Gastroenterology》 SCIE CAS 2015年第29期8903-8911,共9页
AIM: To report the clinical outcomes and ergonomics analysis of three laparoscopic approaches in the management of Hirschsprung's disease(HD).METHODS: There were 90 pediatric patients(63 boys, 27 girls; mean age: ... AIM: To report the clinical outcomes and ergonomics analysis of three laparoscopic approaches in the management of Hirschsprung's disease(HD).METHODS: There were 90 pediatric patients(63 boys, 27 girls; mean age: 3.6 ± 2.7 mo; range: 1.0-90.2 mo) who underwent laparoscopic endorectal pull-through Soave procedures for short- and long-segment HD in our hospital. Three laparoscopic approaches were used: conventional laparoscopic pull-through(CLP) in 30 patients between 2009 and 2013, single-incision laparoscopic pull-through(SILP) in 28 patients between 2010 and 2013, and hybrid single-incision laparoscopic pull-through(H-SILP) in 32 patients between 2011 and 2013. We applied the hybrid version of the single-incision approach in 2011 to preserve the cosmetic advantage of SILP and the ergonomic advantage of CLP. We retrospectively analyzed the clinical data, cosmetic results, and ergonomics of these three approaches to have a better understanding of the selection of one approach over another. RESULTS: The CLP, SILP, and H-SILP groups were similar in regard to age, sex, transition zone, blood loss, hospital stay, and intraoperative complications. Early and late postoperative results were not different, with equal daily defecation frequency and postoperative complications. No conversion to open technique was needed and none of the patients had recurrent constipation. With proper training, the ergonomics challenges were overcome and similar operative times were registered for the general operative time in the patients < 1 year of age and the short-segment HD patients. However, significantly shorter operative times were registered compared to SILP for patients > 1 year of age(CLP and H-SILP: 120 ± 15 min and 119 ± 12 min, respectively, vs 140 ± 7 min; P < 0.05) and for long-segment HD patients(152 ± 3.5 min and 154 ± 3.6 min, respectively, vs 176 ± 2.3 min; P < 0.05). The best cosmetic result was registered with the SILP(scarless), followed by the H-SILP(near scarless appearance) and the CLP(visible scars) procedures. CONCLUSION: Based on the results, we believed that the laparoscopic approach should be selected according to the age, transition zone, and desired cosmetic result. 展开更多
关键词 Age COSMETIC ergonomIC hirschsprung'sdisease LAPAROSCOPIC PULL-THROUGH
下载PDF
Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computer-aided therapy 被引量:14
15
作者 NI Bo HE Fa-zhi +1 位作者 PAN Yi-teng YUAN Zhi-yong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第1期37-52,共16页
Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-... Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-aided therapy, has been widely used in the treatment of uterine fibroids. However, such segmentation in HIFU remains challenge for two reasons: (1) the blurry or missing boundaries of lesion regions in the HIFU images and (2) the deformation of uterine fibroids caused by the patient's breathing or an external force during the US imaging process, which can lead to complex shapes of lesion regions. These factors have prevented classical active contour-based segmentation methods from yielding desired results for uterine fibroids in US images. In this paper, a novel active contour-based segmentation method is proposed, which utilizes the correlation information of target shapes among a sequence of images as prior knowledge to aid the existing active contour method. This prior knowledge can be interpreted as a unsupervised clustering of shapes prior modeling. Meanwhile, it is also proved that the shapes correlation has the low-rank property in a linear space, and the theory of matrix recovery is used as an effective tool to impose the proposed prior on an existing active contour model. Finally, an accurate method is developed to solve the proposed model by using the Augmented Lagrange Multiplier (ALM). Experimental results from both synthetic and clinical uterine fibroids US image sequences demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against missing or misleading boundaries, and can greatly improve the efficiency of HIFU therapy. 展开更多
关键词 Active contour shapes correlation ultrasound image segmentation matrix recovery computer-aided therapy.
下载PDF
Application of computer-aided engineering optimum design method in aluminum profile extrusion mould 被引量:8
16
作者 帅词俊 肖刚 +1 位作者 倪正顺 钟掘 《Journal of Central South University of Technology》 2003年第1期64-68,共5页
The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtaine... The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces. 展开更多
关键词 EXTRUSION MOULD computer-aided ENGINEERING OPTIMUM design ANSYS
下载PDF
Enhanced characterization of solid solitary pulmonary nodules with Bayesian analysis-based computer-aided diagnosis 被引量:5
17
作者 Simone Perandini Gian Alberto Soardi +9 位作者 Massimiliano Motton Raffaele Augelli Chiara Dallaserra Gino Puntel Arianna Rossi Giuseppe Sala Manuel Signorini Laura Spezia Federico Zamboni Stefania Montemezzi 《World Journal of Radiology》 CAS 2016年第8期729-734,共6页
The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomogr... The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomography(CT). The study included 100 randomly selected SPNs with a definitive diagnosis. Nodule features at first and follow-up CT scans as well as clinical data were evaluated individually on a 1 to 5 points risk chart by 7 radiologists, firstly blinded then aware of Bayesian Inference Malignancy Calculator(BIMC) model predictions. Raters' predictions were evaluated by means of receiver operating characteristic(ROC) curve analysis and decision analysis. Overall ROC area under the curve was 0.758 before and 0.803 after the disclosure of CAD predictions(P = 0.003). A net gain in diagnostic accuracy was found in 6 out of 7 readers. Mean risk class of benign nodules dropped from 2.48 to 2.29, while mean risk class of malignancies rose from 3.66 to 3.92. Awareness of CAD predictions also determined a significant drop on mean indeterminate SPNs(15 vs 23.86 SPNs) and raised the mean number of correct and confident diagnoses(mean 39.57 vs 25.71 SPNs). This study provides evidence supporting the integration of the Bayesian analysis-based BIMC model in SPN characterization. 展开更多
关键词 SOLITARY pulmonary NODULE computer-aided diagnosis Lung NEOPLASMS MULTIDETECTOR COMPUTED tomography Bayesian prediction
下载PDF
Integrated computer-aided formulation design:A case study of andrographolide/cyclodextrin ternary formulation 被引量:3
18
作者 Haoshi Gao Yan Su +6 位作者 Wei Wang Wei Xiong Xiyang Sun Yuanhui Ji Hua Yu Haifeng Li Defang Ouyang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2021年第4期494-507,共14页
Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate vario... Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate various computational tools,including machine learning,molecular dynamic simulation and physiologically based absorption modeling(PBAM),to enhance andrographolide(AG)/cyclodextrins(CDs)formulation design.The light GBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy.AG/γ-CD inclusion complexes showed the strongest binding affinity,which was experimentally validated by the phase solubility study.The molecular dynamic simulation was used to investigate the inclusion mechanism between AG andγ-CD,which was experimentally characterized by DSC,FTIR and NMR techniques.PBAM was applied to simulate the in vivo behavior of the formulations,which were validated by cell and animal experiments.Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate(TPGS)significantly increased the intracellular uptake of AG in MDCKMDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers.The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills,respectively.In conclusion,this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility,dissolution rate and bioavailability.The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design. 展开更多
关键词 Integrated computer-aided formulation design Machine learning Molecular dynamic simulation Physiologically based absorption modeling ANDROGRAPHOLIDE Cyclodextrins
下载PDF
Human Factors/Ergonomics (HFE) in Leadership and Management: Organizational Interventions to Reduce Stress in Healthcare Delivery 被引量:1
19
作者 Michael R. Privitera 《Health》 2020年第9期1262-1278,共17页
<p align="justify"> <span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span>Clinician Burnout is a personal and public health iss... <p align="justify"> <span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span>Clinician Burnout is a personal and public health issue. Most occupational stressors contributing to clinician burnout are systemic. The combination of organizational interventions along with individual interventions is necessary to make significant lasting difference in reducing burnout, improving clinician and patient satisfaction and reducing latent error in healthcare delivery. Application of Human Factors/Ergonomics (HFE) science in healthcare leadership and management is a gap in current training for leaders. HFE uses concepts from organizational, educational and cognitive science, systems science and industrial engineering. HFE application is especially necessary in a fast changing highly stressful healthcare environment which impacts the wellbeing of clinicians and the safety of patients under care. Practical suggestions for working with various healthcare leadership styles and organizational dynamics, while aligning wellness efforts with institutional mission are discussed. Concrete examples of decreasing extraneous mental load on clinicians to preserve their brainpower to achieve quality patient care are illustrated. Organizational interventions in combination with individual interventions to reduce and manage burnout have enormous potential to improve clinician wellbeing and satisfaction in taking care of patients, reduce costs, risk of error and create the safe working environment needed to sustainably give high quality care to patients. </p> 展开更多
关键词 LEADERSHIP MANAGEMENT BURNOUT Human Factors ergonomics Occupational Stress Organizational Interventions
下载PDF
Breast Tumor Computer-Aided Detection System Based on Magnetic Resonance Imaging Using Convolutional Neural Network 被引量:3
20
作者 Jing Lu Yan Wu +4 位作者 Mingyan Hu Yao Xiong Yapeng Zhou Ziliang Zhao Liutong Shang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期365-377,共13页
Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing ... Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing between tumor and non-tumor in MRI,a new type of computer-aided detection CAD system for breast tumors is designed in this paper.The CAD system was constructed using three networks,namely,the VGG16,Inception V3,and ResNet50.Then,the influence of the convolutional neural network second migration on the experimental results was further explored in the VGG16 system.Result:CAD system built based on VGG16,Inception V3,and ResNet50 has higher performance than mainstream CAD systems.Among them,the system built based on VGG16 and ResNet50 has outstanding performance.We further explore the impact of the secondary migration on the experimental results in the VGG16 system,and these results show that the migration can improve system performance of the proposed framework.Conclusion:The accuracy of CNN represented by VGG16 is as high as 91.25%,which is more accurate than traditional machine learningmodels.The F1 score of the three basic networks that join the secondary migration is close to 1.0,and the performance of the VGG16-based breast tumor CAD system is higher than Inception V3,and ResNet50. 展开更多
关键词 computer-aided diagnosis breast cancer VGG16 convolutional neural network magnetic resonance imaging
下载PDF
上一页 1 2 163 下一页 到第
使用帮助 返回顶部