BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,e...BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.展开更多
BACKGROUND Subchorionic hematoma(SCH)is a common complication in early pregnancy characterized by the accumulation of blood between the uterine wall and the chorionic membrane.SCH can lead to adverse pregnancy outcome...BACKGROUND Subchorionic hematoma(SCH)is a common complication in early pregnancy characterized by the accumulation of blood between the uterine wall and the chorionic membrane.SCH can lead to adverse pregnancy outcomes such as miscarriage,preterm birth,and other complications.Early detection and accurate assessment of SCH are crucial for appropriate management and improved pregnancy outcomes.AIM To evaluate the diagnostic efficacy of virtual organ computer-assisted analysis(VOCAL)in measuring the volume ratio of SCH to gestational sac(GS)combined with serum progesterone on early pregnancy outcomes in patients with SCH.METHODS A total of 153 patients with SCH in their first-trimester pregnancies between 6 and 11 wk were enrolled.All patients were followed up until a gestational age of 20 wk.The parameters of transvaginal two-dimensional ultrasound,including the circumference of SCH(Cs),surface area of SCH(Ss),circumference of GS(Cg),and surface area of GS(Sg),and the parameters of VOCAL with transvaginal three-dimensional ultrasound,including the three-dimensional volume of SCH(3DVs)and GS(3DVg),were recorded.The size of the SCH and its ratio to the GS size(Cs/Cg,Ss/Sg,3DVs/3DVg)were recorded and compared.RESULTS Compared with those in the normal pregnancy group,the adverse pregnancy group had higher Cs/Cg,Ss/Sg,and 3DVs/3DVg ratios(P<0.05).When 3DVs/3DVg was 0.220,the highest predictive performance predicted adverse pregnancy outcomes,resulting in an AUC of 0.767,and the sensitivity,specificity were 70.2%,75%respectively.VOCAL measuring 3DVs/3DVg combined with serum progesterone gave a diagnostic AUC of 0.824 for early pregnancy outcome in SCH patients,with a high sensitivity of 82.1%and a specificity of 72.1%,which showed a significant difference between AUC.CONCLUSION VOCAL-measured 3DVs/3DVg effectively quantifies the severity of SCH,while combined serum progesterone better predicts adverse pregnancy outcomes.展开更多
Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS r...Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS reminds largely unexplored,especially for diseases with a low prevalence in areas consuming FBS,namely,inflammatory bowel disease.In this study,Lactiplantibacillus pentosus YQ001 and Lentilactobacillus senioris YQ005 were screening by in vitro probiotic tests to further investigate the probioticlike bioactivity in dextran sulfate sodium(DSS)-induced ulcerative colitis(UC)mouse.They exhibited more positive probiotic effects than Lactobacillus rhamnosus GG in preventing intestinal inflammatory response.The results revealed that both strains improved the abundance of deficient intestinal microbiota in UC mice,including Muribaculaceae and Akkermansia.In the serum metabolome,they modulated the DSS-disturbed levels of metabolites,with significant increment of cinnamic acid.Meanwhile,they reduced the expression levels of interleukin-1β(IL-1β),interleukin-6(IL-6)inflammatory factors and increased zonula occludens-1(ZO-1),Occludin,and cathelicidin-related antimicrobial peptide(CRAMP)in the colon.Consequently,these results demonstrated that Lactobacillus spp.isolates derived from FBS showed promising probiotic activity based on the gut microbiome homeostasis modulation,anti-inflammation and intestinal barrier protection in UC mice.展开更多
Astrocytes,the main population of glial cells in the central nervous system(CNS),exert essential tasks for the control of brain tissue homeostasis,supporting neuron and other glial cell activity from the developmental...Astrocytes,the main population of glial cells in the central nervous system(CNS),exert essential tasks for the control of brain tissue homeostasis,supporting neuron and other glial cell activity from the developmental stage to adult life.To maintain the optimal functionality of the brain,astroglial cells are particularly committed to reacting to every change in tissue homeostatic conditions,from mild modifications of the physiological environment,a process called astrocyte activation,to the more severe alterations occurring in pathological situations causing astrocyte reactivity or reactive astrogliosis(Escartin et al.,2021).During these reactive states,astrocytes mount an active,progressive response encompassing morphological,molecular,and interactional remodeling,leading to the acquisition of new functions and the loss of others,whose intensity,duration,and reversibility are dependent on the nature of the stimulus and regulated in a context-specific manner.展开更多
Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodu...Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.展开更多
Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the ...Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances.In this paper,D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals.In addition,the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination.A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries.Meanwhile,LiF is used to create this field effect,repelling hole carriers away from the PVK and C60 interface and thus reducing recombination.As a result,a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6%(0.16 cm^(2)),one of the highest results for 2-T PVK/CIGS TSCs to our knowledge.This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.展开更多
The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape,...The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.展开更多
The computer-assisted surgery (CAS)has significantly improved the accuracy, reliability and outcomes of traumatic,spinal,nerve surgery and many other operations with a less invasive way.The application of CAS for scap...The computer-assisted surgery (CAS)has significantly improved the accuracy, reliability and outcomes of traumatic,spinal,nerve surgery and many other operations with a less invasive way.The application of CAS for scaphoid fractures remains experimental.The related studies are scanty and most of them are cadaver researches.Some intrinsic defects from the registration procedure,scan and immobilization of limbs may inevitably result in deviations. Some deviations become more obvious with operations of small bones (such as scaphoid)although they are acceptable for spine and other orthopedic surgeries.We reviewed the current literatures on the applications of CAS for scaphoid operation and summarized technical principles,scan and registration methods,immobilization of limbs and their outcomes.On the basis of the data,we analyzed the limitations of this technique and envisioned its future development.展开更多
An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filt...An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.展开更多
BACKGROUND Artificial intelligence in colonoscopy is an emerging field,and its application may help colonoscopists improve inspection quality and reduce the rate of missed polyps and adenomas.Several deep learning-bas...BACKGROUND Artificial intelligence in colonoscopy is an emerging field,and its application may help colonoscopists improve inspection quality and reduce the rate of missed polyps and adenomas.Several deep learning-based computer-assisted detection(CADe)techniques were established from small single-center datasets,and unrepresentative learning materials might confine their application and generalization in wide practice.Although CADes have been reported to identify polyps in colonoscopic images and videos in real time,their diagnostic performance deserves to be further validated in clinical practice.AIM To train and test a CADe based on multicenter high-quality images of polyps and preliminarily validate it in clinical colonoscopies.METHODS With high-quality screening and labeling from 55 qualified colonoscopists,a dataset consisting of over 71000 images from 20 centers was used to train and test a deep learning-based CADe.In addition,the real-time diagnostic performance of CADe was tested frame by frame in 47 unaltered full-ranged videos that contained 86 histologically confirmed polyps.Finally,we conducted a selfcontrolled observational study to validate the diagnostic performance of CADe in real-world colonoscopy with the main outcome measure of polyps per colonoscopy in Changhai Hospital.RESULTS The CADe was able to identify polyps in the test dataset with 95.0%sensitivity and 99.1%specificity.For colonoscopy videos,all 86 polyps were detected with 92.2%sensitivity and 93.6%specificity in frame-by-frame analysis.In the prospective validation,the sensitivity of CAD in identifying polyps was 98.4%(185/188).Folds,reflections of light and fecal fluid were the main causes of false positives in both the test dataset and clinical colonoscopies.Colonoscopists can detect more polyps(0.90 vs 0.82,P<0.001)and adenomas(0.32 vs 0.30,P=0.045)with the aid of CADe,particularly polyps<5 mm and flat polyps(0.65 vs 0.57,P<0.001;0.74 vs 0.67,P=0.001,respectively).However,high efficacy is not realized in colonoscopies with inadequate bowel preparation and withdrawal time(P=0.32;P=0.16,respectively).CONCLUSION CADe is feasible in the clinical setting and might help endoscopists detect more polyps and adenomas,and further confirmation is warranted.展开更多
The aim of the present study was to compare assessments of sperm concentration and sperm motility analysed by conventional semen analysis with those obtained by computer-assisted semen analysis (CASA) (Copenhagen R...The aim of the present study was to compare assessments of sperm concentration and sperm motility analysed by conventional semen analysis with those obtained by computer-assisted semen analysis (CASA) (Copenhagen Rigshospitalet Image House Sperm Motility Analysis System (CRISMAS) 4.6 software) using semen samples from 166 young Danish men. The CRISMAS software identifies sperm concentration and classifies spermatozoa into three motility categories. To enable comparison of the two methods, the four motility stages obtained by conventional semen analysis were, based on their velocity classifications, divided into three stages, comparable to the three CRISMAS motility categories: rapidly progressive (A), slowly progressive (B) and non-progressive (C+ D). Differences between the two methods were large for all investigated parameters (P〈0.001). CRISMAS overestimated sperm concentration and the proportion of rapidly progressive spermatozoa and, consequently, underestimated the percentages of slowly progressive and non-progressive spermatozoa, compared to the conventional method. To investigate whether results drifted according to time of semen analysis, results were pooled into quarters according to date of semen analysis. CRISMAS motility results appeared more stable over time compared to the conventional analysis; however, neither method showed any trends. Apparently, CRISMAS CASA results and results from the conventional method were not comparable with respect to sperm concentration and motility analysis. This needs to be accounted for in clinics using this software and in studies of determinants of these semen characteristics.展开更多
Improving peroral delivery efficiency is always a persistent goal for both small-molecule and macromolecular drug development. However,intestinal mucus barrier which greatly impedes drug-loaded nanoparticles penetrati...Improving peroral delivery efficiency is always a persistent goal for both small-molecule and macromolecular drug development. However,intestinal mucus barrier which greatly impedes drug-loaded nanoparticles penetration is commonly overlooked. Therefore,in this study,taking fluorescent labeled PLGA(poly(lactic-co-glycolic acid)) nanoparticles as a tool,the influence of anionic and nonionic surfactants on mucus penetration ability of nanoparticles and their mucus barrier regulating ability were studied. The movement of PLGA nanoparticles in mucus was tracked by multiple particles tracking method(MPT).Alteration of mucus properties by addition of surfactants was evaluated by rheology and morphology study. Rat intestinal villus penetration study was used to further evaluate penetration enhancement of nanoparticles. The effective diffusivities of the nanoparticles in surfactants pretreated mucus were increased by 2–3 times and the mucus barrier regulating capacity was also surfactant type dependent. Sodium dodecyl sulfate(SDS) increased the complex viscosity and viscoelastic properties of mucus,but poloxamer presented a decreased trend. Tween 80 maintained the rheological property of the mucus. With the mucus barrier regulated by surfactants,the penetration of nanoparticles in intestinal villus was obviously increased. In summary,the mucus penetration ability of nanoparticles could be enhanced by altering mucus microenvironment with surfactants. Tween 80 which largely retains the original mucus rheology and morphology properties may be a promising candidate for facilitating nanoparticle penetration through the mucus barrier with good safety profile.展开更多
Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium cata...Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium catalysis. Starting from the established X-ray structure of bovine GPX, all kinetically defined intermediates and enzyme substrate complexes were modelled. The models thus obtained support the hypothesis that the essential steps of the catalysis are three distinct redox changes of the active site selenium which, in the ground state, presents itself at the surface of selenoperoxidases as the center of a characteristic triad built by selenocysteine, glutarnine and tryptophan. In GPX, four arginine residues and a lysine residue provide an electrostatic architecture which, in each reductive step, directs the donor substrate GSH towards the catalytic center in such a way that 1ts sulfhydryl group must react with the selenium moiety. To this end, different equally efficient modes of substrate binding appear possible. The models are consistent with substrate specificity data, kinetic pattern and other functional characteristics of the enzyme. Comparison of molecular models of GPX with those of other members of the GPX superfamily reveals that the cosubstrate binding mechanisrns are unique for the classical type of cytosolic glutathione peroxidases but cannot operate e. g. in plasma GPX and phospholipid hydroperoxide GPX. The structural differences between the selenoperoxidases, shown to be relevant to their specificities, are discussed in terms of functional diversification within the GPX superfamily展开更多
This work experimentally demonstrates a new method of optimizing the transport of cold atoms via modulating the velocity profile imposed on a magnetic quadrupole trap.The trap velocity and corresponding modulation are...This work experimentally demonstrates a new method of optimizing the transport of cold atoms via modulating the velocity profile imposed on a magnetic quadrupole trap.The trap velocity and corresponding modulation are controlled by varying the currents of two pairs of anti-Helmholtz coils.Cold 87Rb atoms are transported in a non-adiabatic regime over 22 mm in 200 ms.For the transported atoms their final-vibration amplitude dependences of modulation period number,depth,and initial phase are investigated.With modulation period n = 5,modulation depth K = 0.55,and initial phase φ = 0,cold atom clouds with more atom numbers,smaller final-vibration amplitude,and lower temperature are efficiently transported.Theoretical analysis and numerical simulation are also provided,which are in good agreement with experimental results.展开更多
The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−...The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.展开更多
The neuromodulatory transmitter serotonin(5-hydroxytryptamine,5-HT)is synthesized by neurons located in the brainstem,which project more or less densely to the entire central nervous system(Charnay and Leger,2010).Ser...The neuromodulatory transmitter serotonin(5-hydroxytryptamine,5-HT)is synthesized by neurons located in the brainstem,which project more or less densely to the entire central nervous system(Charnay and Leger,2010).Serotonin regulates a variety of physiological functions,including food intake,reward,reproduction,sleep-wake cycle,memory,cognition,emotion,and mood(Charnay and Leger,2010).展开更多
BACKGROUND Most complex renal stones are managed primarily with percutaneous nephrolithotomy(PCNL).However,PCNL is still a great challenge for surgeons because of poor comprehension on complex adjacent structures.Nove...BACKGROUND Most complex renal stones are managed primarily with percutaneous nephrolithotomy(PCNL).However,PCNL is still a great challenge for surgeons because of poor comprehension on complex adjacent structures.Novel techniques are required to assist in planning and navigation.AIM To apply and evaluate the Hisense computer-assisted surgery(CAS)system in PCNL.METHODS A total of 60 patients with complex renal stones were included.Thirty patients in the CAS group had three-dimensional(3 D)virtual models constructed with the CAS system.The model assisted in planning and navigating in the CAS system.Thirty patients in the control group planned and navigated as standard PCNL,without the application of the CAS system.Success rate of one attempt,operation time,initial stone-free rate,decrease in hemoglobin,and complications were collected and analyzed.RESULTS There were no statistically significant differences in the baseline characteristics or planning characteristics.The success rate of one puncturing attempt(90%vs 67%,P=0.028)and the initial stone-free rate(87%vs 63%,P=0.037)were significantly higher in the CAS group.However,there were no statistically significant differences in the operation time(89.20±29.60 min vs 92.33±33.08 min,P=0.859)or in the decrease in hemoglobin(11.07±8.32 g/L vs 9.03±11.72 g/L,P=0.300)between the CAS group and the control group.No statistically significant differences in the incidence of complications(Clavien-Dindo grade≥2)were found.CONCLUSION Compared with standard PCNL,CAS-assisted PCNL had advantages in terms of the puncturing success rate and stone-free rate.The Hisense CAS System was recommended to assist in preoperative planning and intraoperative navigation for an intuitive,precise and convenient PCNL.展开更多
The electronic structure of catalytic active sites can be influenced by modulating the coordination bonding of the central single metal atom,but it is difficult to achieve.Herein,we reported the single Zn-atom incorpo...The electronic structure of catalytic active sites can be influenced by modulating the coordination bonding of the central single metal atom,but it is difficult to achieve.Herein,we reported the single Zn-atom incorporated dual doped P,N carbon framework(Zn-N_(4)P/C)for ORR via engineering the surrounding coordination environment of active centers.The Zn-N_(4)P/C catalyst exhibited comparable ORR activity(E_(1/2)=0.86 V)and significantly better ORR stability than that of Pt/C catalyst.It also shows respectable performance in terms of maximum peak power density(249.6 mW cm^(-2)),specific capacitance(779 mAh g^(-1)),and charge-discharge cycling stability for 150 hours in Zn-air battery.The high catalytic activity is attributed to the uniform active sites,tunable electronic/geometric configuration,optimized intrinsic activity,and faster mass transfer during ORR-pathway.Further,theoretical results exposed that the Zn-N_(4)P configuration is more electrochemically active as compared to Zn-N_(4) structure for the oxygen reduction reaction.展开更多
A new method of estimating the frequency-known signals from the strong background noise was presented first. Then the new method was used in the demodulation of the digital frequency modulation (FSK) signals. The new ...A new method of estimating the frequency-known signals from the strong background noise was presented first. Then the new method was used in the demodulation of the digital frequency modulation (FSK) signals. The new demodulation method can complete the demodulation of the FSK signals only with the carrier frequency and without any carrier phase information. The simulation results show that the performance of anti-noise of the new method is better than that of the incoherent demodulation method and the fluctuation of the carrier phase has little effect on the new method. So the new demodulation method has a fine prospect in the practical applications.展开更多
Due to the negative roles of tumor microenvironment(TME)in compromising therapeutic responses of various cancer therapies,it is expected that modulation of TME may be able to enhance the therapeutic responses during c...Due to the negative roles of tumor microenvironment(TME)in compromising therapeutic responses of various cancer therapies,it is expected that modulation of TME may be able to enhance the therapeutic responses during cancer treatment.Herein,we develop a concise strategy to prepare pH-responsive nanoparticles via the CaCO3-assisted double emulsion method,thereby enabling effective co-encapsulation of both doxorubicin(DOX),an immunogenic cell death(ICD)inducer,and alkylated NLG919(aNLG919),an inhibitor of indoleamine 2,3-dioxygenase 1(IDO1).The obtained DOX/aNLG919-loaded CaCO3 nanoparticles(DNCaNPs)are able to cause effective ICD of cancer cells and at the same time restrict the production of immunosuppressive kynurenine by inhibiting IDO1.Upon intravenous injection,such DNCaNPs show efficient tumor accumulation,improved tumor penetration of therapeutics and neutralization of acidic TME.As a result,those DNCaNPs can elicit effective anti-tumor immune responses featured in increased density of tumor-infiltrating CD8+cytotoxic T cells as well as depletion of immunosuppressive regulatory T cells(Tregs),thus effectively suppressing the growth of subcutaneous CT26 and orthotopic 4T1 tumors on the Balb/c mice through combined chemotherapy&immunotherapy.This study presents a compendious strategy for construction of pH-responsive nanoparticles,endowing significantly enhanced chemo-immunotherapy of cancer by overcoming the immunosuppressive TME.展开更多
基金Supported by National Natural Science Foundation of China,No.82293665Anhui Provincial Department of Education University Research Project,No.2023AH051763.
文摘BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.
文摘BACKGROUND Subchorionic hematoma(SCH)is a common complication in early pregnancy characterized by the accumulation of blood between the uterine wall and the chorionic membrane.SCH can lead to adverse pregnancy outcomes such as miscarriage,preterm birth,and other complications.Early detection and accurate assessment of SCH are crucial for appropriate management and improved pregnancy outcomes.AIM To evaluate the diagnostic efficacy of virtual organ computer-assisted analysis(VOCAL)in measuring the volume ratio of SCH to gestational sac(GS)combined with serum progesterone on early pregnancy outcomes in patients with SCH.METHODS A total of 153 patients with SCH in their first-trimester pregnancies between 6 and 11 wk were enrolled.All patients were followed up until a gestational age of 20 wk.The parameters of transvaginal two-dimensional ultrasound,including the circumference of SCH(Cs),surface area of SCH(Ss),circumference of GS(Cg),and surface area of GS(Sg),and the parameters of VOCAL with transvaginal three-dimensional ultrasound,including the three-dimensional volume of SCH(3DVs)and GS(3DVg),were recorded.The size of the SCH and its ratio to the GS size(Cs/Cg,Ss/Sg,3DVs/3DVg)were recorded and compared.RESULTS Compared with those in the normal pregnancy group,the adverse pregnancy group had higher Cs/Cg,Ss/Sg,and 3DVs/3DVg ratios(P<0.05).When 3DVs/3DVg was 0.220,the highest predictive performance predicted adverse pregnancy outcomes,resulting in an AUC of 0.767,and the sensitivity,specificity were 70.2%,75%respectively.VOCAL measuring 3DVs/3DVg combined with serum progesterone gave a diagnostic AUC of 0.824 for early pregnancy outcome in SCH patients,with a high sensitivity of 82.1%and a specificity of 72.1%,which showed a significant difference between AUC.CONCLUSION VOCAL-measured 3DVs/3DVg effectively quantifies the severity of SCH,while combined serum progesterone better predicts adverse pregnancy outcomes.
基金supported by the key project of the Natural Science Foundation of Chongqing(cstc2020jcyj-zdxmX0029)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100412).
文摘Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS reminds largely unexplored,especially for diseases with a low prevalence in areas consuming FBS,namely,inflammatory bowel disease.In this study,Lactiplantibacillus pentosus YQ001 and Lentilactobacillus senioris YQ005 were screening by in vitro probiotic tests to further investigate the probioticlike bioactivity in dextran sulfate sodium(DSS)-induced ulcerative colitis(UC)mouse.They exhibited more positive probiotic effects than Lactobacillus rhamnosus GG in preventing intestinal inflammatory response.The results revealed that both strains improved the abundance of deficient intestinal microbiota in UC mice,including Muribaculaceae and Akkermansia.In the serum metabolome,they modulated the DSS-disturbed levels of metabolites,with significant increment of cinnamic acid.Meanwhile,they reduced the expression levels of interleukin-1β(IL-1β),interleukin-6(IL-6)inflammatory factors and increased zonula occludens-1(ZO-1),Occludin,and cathelicidin-related antimicrobial peptide(CRAMP)in the colon.Consequently,these results demonstrated that Lactobacillus spp.isolates derived from FBS showed promising probiotic activity based on the gut microbiome homeostasis modulation,anti-inflammation and intestinal barrier protection in UC mice.
基金supported by funds from the Italian Ministry of Health,Ricerca Finalizzata,(Grant N.GR-2013-02355882 and GR-2021-12373946 to AL)5x1000 Project of the Istituto Superiore di Sanità(Project code:ISS5x1000_21-949432e8c9be to AL)the European Union–NextGeneration EU through the Italian Ministry of University and Research under PNRR-M4C2-I1.3 Project PE_00000019“HEAL ITALIA”to EA(CUP I83C22001830006)。
文摘Astrocytes,the main population of glial cells in the central nervous system(CNS),exert essential tasks for the control of brain tissue homeostasis,supporting neuron and other glial cell activity from the developmental stage to adult life.To maintain the optimal functionality of the brain,astroglial cells are particularly committed to reacting to every change in tissue homeostatic conditions,from mild modifications of the physiological environment,a process called astrocyte activation,to the more severe alterations occurring in pathological situations causing astrocyte reactivity or reactive astrogliosis(Escartin et al.,2021).During these reactive states,astrocytes mount an active,progressive response encompassing morphological,molecular,and interactional remodeling,leading to the acquisition of new functions and the loss of others,whose intensity,duration,and reversibility are dependent on the nature of the stimulus and regulated in a context-specific manner.
文摘Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.
基金supported by“National Natural Science Foundation of China(U21A20171,U20A20245)”“Hubei Provincial Natural Science Foundation of China(2023AFA010)”+1 种基金“Independent Innovation Projects of the Hubei Longzhong Laboratory(2022ZZ-09)”“Social Public Welfare and Basic Research Special Project of Zhongshan(2020B2015).”。
文摘Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances.In this paper,D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals.In addition,the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination.A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries.Meanwhile,LiF is used to create this field effect,repelling hole carriers away from the PVK and C60 interface and thus reducing recombination.As a result,a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6%(0.16 cm^(2)),one of the highest results for 2-T PVK/CIGS TSCs to our knowledge.This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.
基金supported by the National Natural Science Foundation of China(21276041)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0079)+1 种基金the Natural Science Foundation of Liaoning Province(2015020200)the Fundamental Research Funds for the Central Universities(DUT15LK41)~~
文摘The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.
基金the National Natural Science Foundation of China(No.51675036)the Innovation and Development Project of Intelligent Manufacturing Technique from Beijing Municipal Science and Technology Commission(No.Z161100001516012).
文摘The computer-assisted surgery (CAS)has significantly improved the accuracy, reliability and outcomes of traumatic,spinal,nerve surgery and many other operations with a less invasive way.The application of CAS for scaphoid fractures remains experimental.The related studies are scanty and most of them are cadaver researches.Some intrinsic defects from the registration procedure,scan and immobilization of limbs may inevitably result in deviations. Some deviations become more obvious with operations of small bones (such as scaphoid)although they are acceptable for spine and other orthopedic surgeries.We reviewed the current literatures on the applications of CAS for scaphoid operation and summarized technical principles,scan and registration methods,immobilization of limbs and their outcomes.On the basis of the data,we analyzed the limitations of this technique and envisioned its future development.
基金This project was supported by China Postdoctoral Science Foundation (2003034466)Scientific Research Fund of Hunan Provincial Education Department (02B032).
文摘An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.
基金the National Key R&D Program of China,No.2018YFC1313103the National Natural Science Foundation of China,No.81670473 and No.81873546+1 种基金the“Shu Guang”Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation,No.19SG30the Key Area Research and Development Program of Guangdong Province,China,No.2018B010111001.
文摘BACKGROUND Artificial intelligence in colonoscopy is an emerging field,and its application may help colonoscopists improve inspection quality and reduce the rate of missed polyps and adenomas.Several deep learning-based computer-assisted detection(CADe)techniques were established from small single-center datasets,and unrepresentative learning materials might confine their application and generalization in wide practice.Although CADes have been reported to identify polyps in colonoscopic images and videos in real time,their diagnostic performance deserves to be further validated in clinical practice.AIM To train and test a CADe based on multicenter high-quality images of polyps and preliminarily validate it in clinical colonoscopies.METHODS With high-quality screening and labeling from 55 qualified colonoscopists,a dataset consisting of over 71000 images from 20 centers was used to train and test a deep learning-based CADe.In addition,the real-time diagnostic performance of CADe was tested frame by frame in 47 unaltered full-ranged videos that contained 86 histologically confirmed polyps.Finally,we conducted a selfcontrolled observational study to validate the diagnostic performance of CADe in real-world colonoscopy with the main outcome measure of polyps per colonoscopy in Changhai Hospital.RESULTS The CADe was able to identify polyps in the test dataset with 95.0%sensitivity and 99.1%specificity.For colonoscopy videos,all 86 polyps were detected with 92.2%sensitivity and 93.6%specificity in frame-by-frame analysis.In the prospective validation,the sensitivity of CAD in identifying polyps was 98.4%(185/188).Folds,reflections of light and fecal fluid were the main causes of false positives in both the test dataset and clinical colonoscopies.Colonoscopists can detect more polyps(0.90 vs 0.82,P<0.001)and adenomas(0.32 vs 0.30,P=0.045)with the aid of CADe,particularly polyps<5 mm and flat polyps(0.65 vs 0.57,P<0.001;0.74 vs 0.67,P=0.001,respectively).However,high efficacy is not realized in colonoscopies with inadequate bowel preparation and withdrawal time(P=0.32;P=0.16,respectively).CONCLUSION CADe is feasible in the clinical setting and might help endoscopists detect more polyps and adenomas,and further confirmation is warranted.
文摘The aim of the present study was to compare assessments of sperm concentration and sperm motility analysed by conventional semen analysis with those obtained by computer-assisted semen analysis (CASA) (Copenhagen Rigshospitalet Image House Sperm Motility Analysis System (CRISMAS) 4.6 software) using semen samples from 166 young Danish men. The CRISMAS software identifies sperm concentration and classifies spermatozoa into three motility categories. To enable comparison of the two methods, the four motility stages obtained by conventional semen analysis were, based on their velocity classifications, divided into three stages, comparable to the three CRISMAS motility categories: rapidly progressive (A), slowly progressive (B) and non-progressive (C+ D). Differences between the two methods were large for all investigated parameters (P〈0.001). CRISMAS overestimated sperm concentration and the proportion of rapidly progressive spermatozoa and, consequently, underestimated the percentages of slowly progressive and non-progressive spermatozoa, compared to the conventional method. To investigate whether results drifted according to time of semen analysis, results were pooled into quarters according to date of semen analysis. CRISMAS motility results appeared more stable over time compared to the conventional analysis; however, neither method showed any trends. Apparently, CRISMAS CASA results and results from the conventional method were not comparable with respect to sperm concentration and motility analysis. This needs to be accounted for in clinics using this software and in studies of determinants of these semen characteristics.
基金financially supported by the National Natural Science Foundation of China (Grant No. 31870987)
文摘Improving peroral delivery efficiency is always a persistent goal for both small-molecule and macromolecular drug development. However,intestinal mucus barrier which greatly impedes drug-loaded nanoparticles penetration is commonly overlooked. Therefore,in this study,taking fluorescent labeled PLGA(poly(lactic-co-glycolic acid)) nanoparticles as a tool,the influence of anionic and nonionic surfactants on mucus penetration ability of nanoparticles and their mucus barrier regulating ability were studied. The movement of PLGA nanoparticles in mucus was tracked by multiple particles tracking method(MPT).Alteration of mucus properties by addition of surfactants was evaluated by rheology and morphology study. Rat intestinal villus penetration study was used to further evaluate penetration enhancement of nanoparticles. The effective diffusivities of the nanoparticles in surfactants pretreated mucus were increased by 2–3 times and the mucus barrier regulating capacity was also surfactant type dependent. Sodium dodecyl sulfate(SDS) increased the complex viscosity and viscoelastic properties of mucus,but poloxamer presented a decreased trend. Tween 80 maintained the rheological property of the mucus. With the mucus barrier regulated by surfactants,the penetration of nanoparticles in intestinal villus was obviously increased. In summary,the mucus penetration ability of nanoparticles could be enhanced by altering mucus microenvironment with surfactants. Tween 80 which largely retains the original mucus rheology and morphology properties may be a promising candidate for facilitating nanoparticle penetration through the mucus barrier with good safety profile.
文摘Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium catalysis. Starting from the established X-ray structure of bovine GPX, all kinetically defined intermediates and enzyme substrate complexes were modelled. The models thus obtained support the hypothesis that the essential steps of the catalysis are three distinct redox changes of the active site selenium which, in the ground state, presents itself at the surface of selenoperoxidases as the center of a characteristic triad built by selenocysteine, glutarnine and tryptophan. In GPX, four arginine residues and a lysine residue provide an electrostatic architecture which, in each reductive step, directs the donor substrate GSH towards the catalytic center in such a way that 1ts sulfhydryl group must react with the selenium moiety. To this end, different equally efficient modes of substrate binding appear possible. The models are consistent with substrate specificity data, kinetic pattern and other functional characteristics of the enzyme. Comparison of molecular models of GPX with those of other members of the GPX superfamily reveals that the cosubstrate binding mechanisrns are unique for the classical type of cytosolic glutathione peroxidases but cannot operate e. g. in plasma GPX and phospholipid hydroperoxide GPX. The structural differences between the selenoperoxidases, shown to be relevant to their specificities, are discussed in terms of functional diversification within the GPX superfamily
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974210)the National Basic Research Program of China (Grant No. 2011CB921504)
文摘This work experimentally demonstrates a new method of optimizing the transport of cold atoms via modulating the velocity profile imposed on a magnetic quadrupole trap.The trap velocity and corresponding modulation are controlled by varying the currents of two pairs of anti-Helmholtz coils.Cold 87Rb atoms are transported in a non-adiabatic regime over 22 mm in 200 ms.For the transported atoms their final-vibration amplitude dependences of modulation period number,depth,and initial phase are investigated.With modulation period n = 5,modulation depth K = 0.55,and initial phase φ = 0,cold atom clouds with more atom numbers,smaller final-vibration amplitude,and lower temperature are efficiently transported.Theoretical analysis and numerical simulation are also provided,which are in good agreement with experimental results.
基金financially supported by the NSFC-Yunnan Joint Foundation(U2002213)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University(2019FY003025)the‘Double-First Class’University Construction Project(C176220100042 and CZ21623201)。
文摘The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.
基金the German Research Foundation(DFG)grant GA 654/14-1 to OG.
文摘The neuromodulatory transmitter serotonin(5-hydroxytryptamine,5-HT)is synthesized by neurons located in the brainstem,which project more or less densely to the entire central nervous system(Charnay and Leger,2010).Serotonin regulates a variety of physiological functions,including food intake,reward,reproduction,sleep-wake cycle,memory,cognition,emotion,and mood(Charnay and Leger,2010).
基金Supported by the Science and Technology Program in Chinese Medicine of Shandong Province,No.2020M074。
文摘BACKGROUND Most complex renal stones are managed primarily with percutaneous nephrolithotomy(PCNL).However,PCNL is still a great challenge for surgeons because of poor comprehension on complex adjacent structures.Novel techniques are required to assist in planning and navigation.AIM To apply and evaluate the Hisense computer-assisted surgery(CAS)system in PCNL.METHODS A total of 60 patients with complex renal stones were included.Thirty patients in the CAS group had three-dimensional(3 D)virtual models constructed with the CAS system.The model assisted in planning and navigating in the CAS system.Thirty patients in the control group planned and navigated as standard PCNL,without the application of the CAS system.Success rate of one attempt,operation time,initial stone-free rate,decrease in hemoglobin,and complications were collected and analyzed.RESULTS There were no statistically significant differences in the baseline characteristics or planning characteristics.The success rate of one puncturing attempt(90%vs 67%,P=0.028)and the initial stone-free rate(87%vs 63%,P=0.037)were significantly higher in the CAS group.However,there were no statistically significant differences in the operation time(89.20±29.60 min vs 92.33±33.08 min,P=0.859)or in the decrease in hemoglobin(11.07±8.32 g/L vs 9.03±11.72 g/L,P=0.300)between the CAS group and the control group.No statistically significant differences in the incidence of complications(Clavien-Dindo grade≥2)were found.CONCLUSION Compared with standard PCNL,CAS-assisted PCNL had advantages in terms of the puncturing success rate and stone-free rate.The Hisense CAS System was recommended to assist in preoperative planning and intraoperative navigation for an intuitive,precise and convenient PCNL.
文摘The electronic structure of catalytic active sites can be influenced by modulating the coordination bonding of the central single metal atom,but it is difficult to achieve.Herein,we reported the single Zn-atom incorporated dual doped P,N carbon framework(Zn-N_(4)P/C)for ORR via engineering the surrounding coordination environment of active centers.The Zn-N_(4)P/C catalyst exhibited comparable ORR activity(E_(1/2)=0.86 V)and significantly better ORR stability than that of Pt/C catalyst.It also shows respectable performance in terms of maximum peak power density(249.6 mW cm^(-2)),specific capacitance(779 mAh g^(-1)),and charge-discharge cycling stability for 150 hours in Zn-air battery.The high catalytic activity is attributed to the uniform active sites,tunable electronic/geometric configuration,optimized intrinsic activity,and faster mass transfer during ORR-pathway.Further,theoretical results exposed that the Zn-N_(4)P configuration is more electrochemically active as compared to Zn-N_(4) structure for the oxygen reduction reaction.
基金the National Natural Science Foundation of China (60272077) the Science Foundation of Aeronautics (02F53030).
文摘A new method of estimating the frequency-known signals from the strong background noise was presented first. Then the new method was used in the demodulation of the digital frequency modulation (FSK) signals. The new demodulation method can complete the demodulation of the FSK signals only with the carrier frequency and without any carrier phase information. The simulation results show that the performance of anti-noise of the new method is better than that of the incoherent demodulation method and the fluctuation of the carrier phase has little effect on the new method. So the new demodulation method has a fine prospect in the practical applications.
基金partially supported by the National Natural Science Foundation of China(51802209,22077093,51761145041,51525203)the National Research Programs from Ministry of Science and Technology(MOST)of China(2016YFA0201200)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20180848)the Jiangsu Social Development Project(BE2019658)Collaborative Innovation Center of Suzhou Nano Science and Technologythe 111 Program from the Ministry of Education of China.
文摘Due to the negative roles of tumor microenvironment(TME)in compromising therapeutic responses of various cancer therapies,it is expected that modulation of TME may be able to enhance the therapeutic responses during cancer treatment.Herein,we develop a concise strategy to prepare pH-responsive nanoparticles via the CaCO3-assisted double emulsion method,thereby enabling effective co-encapsulation of both doxorubicin(DOX),an immunogenic cell death(ICD)inducer,and alkylated NLG919(aNLG919),an inhibitor of indoleamine 2,3-dioxygenase 1(IDO1).The obtained DOX/aNLG919-loaded CaCO3 nanoparticles(DNCaNPs)are able to cause effective ICD of cancer cells and at the same time restrict the production of immunosuppressive kynurenine by inhibiting IDO1.Upon intravenous injection,such DNCaNPs show efficient tumor accumulation,improved tumor penetration of therapeutics and neutralization of acidic TME.As a result,those DNCaNPs can elicit effective anti-tumor immune responses featured in increased density of tumor-infiltrating CD8+cytotoxic T cells as well as depletion of immunosuppressive regulatory T cells(Tregs),thus effectively suppressing the growth of subcutaneous CT26 and orthotopic 4T1 tumors on the Balb/c mice through combined chemotherapy&immunotherapy.This study presents a compendious strategy for construction of pH-responsive nanoparticles,endowing significantly enhanced chemo-immunotherapy of cancer by overcoming the immunosuppressive TME.