By using evacuation simulation technology and taking North China University of Technology as an example,the barrier-free evacuation design scheme for groups with different needs in campus environment was deeply discus...By using evacuation simulation technology and taking North China University of Technology as an example,the barrier-free evacuation design scheme for groups with different needs in campus environment was deeply discussed.Based on the data of building layout,population composition,road system and distribution of shelters in the school,a detailed evacuation model was constructed in the Pathfinder emergency evacuation simulation system.By the simulation during the daytime and at night,the total evacuation time of the whole school,evacuation completion time of each building,selection of evacuation paths and shelter utilization were analyzed in detail.The simulation results show that the distribution of shelters on campus is uneven,and their capacity is limited.As a result,the evacuation paths of the disabled,the elderly and children need to be adjusted frequently,which affects the overall evacuation efficiency.In view of this,the optimization strategies of road renovation and entrances of shelters and buildings were put forward from the perspective of space planning.From the perspective of emergency management,it is suggested to improve the campus evacuation infrastructure and strengthen the evacuation drill for teachers and students.These results provide a solid theoretical support for enhancing the construction of campus barrier-free environment and improving the level of emergency management.展开更多
This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to si...This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to simulate and optimize evacuation scenarios in various settings,including public venues,residential areas,and urban environments.By integrating real-world data and behavioral models,the simulation accurately represents human movements,decision-making processes,and traffic flow dynamics during evacuation scenarios.The study evaluates the effectiveness of various evacuation strategies,including route planning,crowd behavior,and emergency response coordination,using a scenario-driven approach within the AnyLogic simulation environment.Furthermore,this research contributes to the establishment of optimized emergency response protocols by systematically evaluating and refining evacuation plans.The research frameworks mentioned in the research imply the efficient use of the AnyLogic simulation model to be used in different sectors and fields to enhance the strategies for saving lives and implementing an efficient evacuation management system.展开更多
As a physical model, the cellular automata (CA) model is widely used in many areas, such as stair evacuation. However, existing CA models do not consider evacuees' walk preferences nor psychological status, and the...As a physical model, the cellular automata (CA) model is widely used in many areas, such as stair evacuation. However, existing CA models do not consider evacuees' walk preferences nor psychological status, and the structure of the basic model is unapplicable for the stair structure. This paper is to improve the stair evacuation simulation by addressing these issues, and a new cellular automata model is established. Several evacuees' walk preference and how evacuee's psychology influences their behaviors are introduced into this model. Evacuees' speeds will be influenced by these features. To validate this simulation, two fire drills held in two high-rise buildings are video-recorded. It is found that the simulation results are similar to the fire drill results. The structure of this model is simple, and it is easy to further develop and utilize in different buildings with various kinds of occupants.展开更多
In order to study the evacuation behavior of miners during accidents,we analyzed the rational layout of a safe chamber,and improved evacuation efficiency.A visual model of evacuation was developed and used to simulate...In order to study the evacuation behavior of miners during accidents,we analyzed the rational layout of a safe chamber,and improved evacuation efficiency.A visual model of evacuation was developed and used to simulate the evacuation process of mines,given their special underground environments.In our simulation,the working faces of a coal mine and nearby tunnels were divided into 0.5 m×0.5 m grids to reflect the location of occupants and obstacles.Based on a "flow potential of the occupant",we determined the direction of movement and routes of occupants.In the model,evacuation speed changed as a function of crowd density,with an average speed of 1.30 m/s.The model also takes into account detection time of the disaster and the personnel response time.Evacuation time,exit flow rate and evacuation path were obtained by simulation.The results indicate that using simulation technology can present a more visual evacuation process and show the behavior of occupants.Our establishment of a mine safety evacuation system has merit as reference value.展开更多
The simulation model Tunev(tunnel evacuation) was developed for people's evacuation in tunnel fire. It contains simple database of the people's behavioral reaction and structure characteristic parameters of tunnel...The simulation model Tunev(tunnel evacuation) was developed for people's evacuation in tunnel fire. It contains simple database of the people's behavioral reaction and structure characteristic parameters of tunnel fireproofing. The model can be used to calculate the total evacuation time in various scenes when fire occurs in the different locations of the tunnel. Combined with fire simulation soft ware CFD- POENICS3.5, Tunev model can be used to calculate the fire danger coming time; by comparing with these two kinds of time, it can be used to assess the safety of the evacuation, and the evacuation process also have a dynamic demo. The simulation results show that the Tunev model can be used to predict the reliability of safe evacuation for people in tunnel fire and provide references for people's safe escape scheme. Some relevant concepts of the model were described and an evacuation simulation of a typical tunnel case, i.e. Xuefeng Mountain Tunnel was performed by using this model. And the model's validation and actual aoolication were also described.展开更多
A simulation study on occupant evacuation in high-speed railway stations (HSRSs) was presented in China. Pathfinder was employed as the simulation platform and a typical HSRS in a medinm-sized city in China was sele...A simulation study on occupant evacuation in high-speed railway stations (HSRSs) was presented in China. Pathfinder was employed as the simulation platform and a typical HSRS in a medinm-sized city in China was selected for model development. The model was carefully calibrated and validated by comparing simulation results with field data. Evacuation efficiency could be improved with the increased door width while such effect decreased when the door width reached a marginal value. And the marginal value varied under different occupant densities. An exponential function between evacuation lime and occupant density was fitted, indicating that occupant density significantly affected evacuation efficiency. A set of different evacuation strategies were compared, in terms of their evacuation performances. It was found that a balanced door usage would result in more efficient evacuations in HSRSs. Thus occupant flows were suggested to be managed considering door capacity. To avoid potential safety issues caused by such strategy ( e. g. , more occupants could be evacuated from a smaller area designed with higher door capacity ), occupants needed to enhance their awareness of following evacuation guidance instead of panic escape in emergencies. Moreover, such safety issues could also be avoided during the design phase that the evacuation capacity was designed to be proportional to the room capacity for each floor. The results of this study provide valuable information for HSRS design and flow management in China.展开更多
Large commercial complexes are large in scale, complex in function, and located in densely populated areas that are prone to casualties due to unfavorable evacuation. To comprehend the safety evacuation of large comme...Large commercial complexes are large in scale, complex in function, and located in densely populated areas that are prone to casualties due to unfavorable evacuation. To comprehend the safety evacuation of large commercial complex buildings in China, investigate the safety evacuation problems encountered during the evacuation process and the evacuation optimization design strategy, the paper uses Pathfinder to build a simulation model based on literature research and study to simulate the evacuation of personnel in a large commercial complex in Dalian and explore its problems during the evacuation process. The results show that the type of personnel has an effect on the large commercial complex’s evacuation simulation results;the total number of evacuees is non-linearly correlated with the time change curve;some staircases take a long time to evacuate and have a low utilization rate. To improve evacuation efficiency, optimization suggestions for safety exits, evacuation stairs, and evacuation channels are made based on the results.展开更多
Regional cities in Japan are at the risk of experiencing big fire accidents or earthquakes every day.However,neither the number nor the capacity of shelters has increased because local governments might not consider t...Regional cities in Japan are at the risk of experiencing big fire accidents or earthquakes every day.However,neither the number nor the capacity of shelters has increased because local governments might not consider them owing to budget shortfall.By contrast,wide-area evacuation simulations can easily provide an antagonizing image of regional urban disasters.After a disaster,the city collapses and the evacuation routes are closed;consequently,evacuees feel anxious and they cannot move as usual.This anxiety behavior has not been considered in previous related studies and simulations.In this study,a wide-area evacuation simulation is developed;this model can not only calculate the possibility of blocking escape routes when the city is broken but also provide safe and more realistic evacuation plans before a disaster occurs by incorporating into the simulation the risk avoidance behaviors of evacuees from road blockage,such as“the route re-seeking behavior”and“the shelter re-selecting behavior”.展开更多
This paper presents a model for simulating crowd evacuation and investigates three widely recognized problems. For the space continuity problem, this paper presents two computation algorithms: one uses grid space to ...This paper presents a model for simulating crowd evacuation and investigates three widely recognized problems. For the space continuity problem, this paper presents two computation algorithms: one uses grid space to evaluate the coordinates of the obstacle's bounding box and the other employs the geometry rule to establish individual evacuation routes. For the problem of collision, avoidance, and excess among the individuals, this paper computes the generalized force and friction force and then modifies the direction of march to obtain a speed model based on the crowd density and real time speed. For the exit selection problem, this paper establishes a method of selecting the exits by combining the exit's crowd state with the individuals. Finally, a particle system is used to simulate the behavior of crowd evacuation and produces useful test results.展开更多
Objective:A computer-based STS(simulative training system) in providing pre-hospital trauma care at a disaster site was applied to teaching nursing students in the Second Military Medical University,China.This article...Objective:A computer-based STS(simulative training system) in providing pre-hospital trauma care at a disaster site was applied to teaching nursing students in the Second Military Medical University,China.This article reports on the teaching effectiveness of this system.Methods:Among 92 participants,46 were in the study group and 46 were in the 'control' group. Each student completed a multiple-choice quiz after completing 18 hours(six three-hour sessions) of the study module,and a score was recorded.The simulative training module was completed only by the study group;the 'control' group was assigned in-class discussions for the same amount of time covering the same content as the study group.The final course scores,which included both comprehensive and group task-based tests were compared between these two groups.The study used a descriptive and comparative approach for quantitative data analysis.Tests of independency between the multiple choice scores and the simulation scores were also performed.Finally,anonymous surveys were conducted.Results:The study group performed better than the 'control' group with a significantly higher average score for the group scenario task-based test score,and consequently the study group's final course score was significantly higher than the 'control' group.As per chi-square tests,no significant associations were found between the multiple choice scores and the simulated training scores.The final surveys showed students overwhelmingly agreed that STS training improved their knowledge and skills,their ability to recognize a potential critical event, and their initial response for trauma care at pre-hospital settings.The survey responses of the study group were noteworthy as they indicated that students recognized the importance of simulative training,appreciated the realism of the simulation,and were able to fight/adjust to the stressful feelings in order to focus on the task.Conclusion:Computer-based STS may be an effective teaching model to help students improve their capability in providing pre-hospital trauma care,and in their effectiveness in disaster response.展开更多
In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices...In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.展开更多
In most situations,staircase is the only egress to evacuate from high-rise buildings.The merging flow on the stair landing has a great influence on the evacuation efficiency.In this paper,we develop an improved cellul...In most situations,staircase is the only egress to evacuate from high-rise buildings.The merging flow on the stair landing has a great influence on the evacuation efficiency.In this paper,we develop an improved cellular automaton model to describe the merging behavior,and the model is validated by a series of real experiments.It is found that the flow rate of simulation results is similar to the drills,which means that the improved model is reasonable and can be used to describe the merging behavior on stairs.Furthermore,some scenarios with different door locations and building floor numbers are simulated by the model.The results show that(i)the best door location is next to the upward staircase;(ii)the total evacuation time and the building floor number are linearly related to each other;(iii)the pedestrians on upper floors have a negative influence on the evacuation flow rate.展开更多
The floor field model has been widely used in evacuation simulation research based on cellular automata model. However, conventional methods of setting floor field will lead to highly insufficient utilization of the e...The floor field model has been widely used in evacuation simulation research based on cellular automata model. However, conventional methods of setting floor field will lead to highly insufficient utilization of the exit area when people gather on one side of the exit. In this study, an extended cellular automata model with modified floor field is proposed to solve this problem. Additionally, a congestion judgment mechanism is integrated in our model, whereby people can synthetically judge the degree of congestion and distance in front of them to determine whether they need to change another exit to evacuate or not. We contrasted the simulation results of the conventional floor field model, the extended model proposed in this paper, and Pathfinder software in a same scenario. It is demonstrated that this extended model can ameliorate the problem of insufficient utilization of the exit area and the trajectory of pedestrian movement and the crowd shape of pedestrians in front of exit in this new model are more realistic than those of the other two models. The findings have implications for modeling pedestrian evacuation.展开更多
The safety of trains,a highly efficient mode of transportation,has attracted significant attention.In the vehicle structure design of a train,the evaluation of the passenger evacuation time is necessary.The establishm...The safety of trains,a highly efficient mode of transportation,has attracted significant attention.In the vehicle structure design of a train,the evaluation of the passenger evacuation time is necessary.The establishment of a simulation model is the fastest,most convenient,and practical way to achieve this goal.However,few scholars have focused on the reliability of a passenger train evacuation simulation model.This paper proposes a new validation method based on dynamic time warping and multidimensional scaling.The proposed method validates the dynamic process of a simulation model,provides statistical results,and can be used for small-sample scenarios such as a train evacuation scenario.The results of a case study indicate that the proposed method is an effective and quantitative approach to the validation of simulation models in a dynamic process.Thus,this paper describes the influence of the train structure size on an evacuation based on the results of simulation experiments.The structural size factors include the door width,aisle width,and seat pitch.The experiment results indicate that a wide aisle and reasonable seat pitch can promote a proper evacuation.In addition,a normal train door width has no effect on an evacuation.展开更多
Building exit as a bottleneck structure is the last and the most congested stage in building evacuation.It is well known that obstacles at the exit affect the evacuation process,but few researchers pay attention to th...Building exit as a bottleneck structure is the last and the most congested stage in building evacuation.It is well known that obstacles at the exit affect the evacuation process,but few researchers pay attention to the effect of stationary pedestrians(the elderly with slow speed,the injured,and the static evacuation guide)as obstacles at the exit on the evacuation process.This paper explores the influence of the presence of a stationary pedestrian as an obstacle at the exit on the evacuation from experiments and simulations.We use a software,Pathfinder,based on the agent-based model to study the effect of ratios of exit width(D)to distance(d)between the static pedestrian and the exit,the asymmetric structure by shifting the static pedestrian upward,and types of obstacles on evacuation.Results show that the evacuation time of scenes with a static pedestrian is longer than that of scenes with an obstacle due to the unexpected hindering effect of the static pedestrian.Different ratios of D/d have different effects on evacuation efficiency.Among the five D/d ratios in this paper,the evacuation efficiency is the largest when d is equal to 0.75D,and the existence of the static pedestrian has a positive impact on evacuation in this condition.The influence of the asymmetric structure of the static pedestrian on evacuation efficiency is affected by D/d.This study can provide a theoretical basis for crowd management and evacuation plan near the exit of complex buildings and facilities.展开更多
Commercial building sector accounts for 8% of the total electricity consumption in India. Cooling activities (HVAC) in commercial buildings consume 55% of the total energy utilized. Consequently, CO<sub>2</su...Commercial building sector accounts for 8% of the total electricity consumption in India. Cooling activities (HVAC) in commercial buildings consume 55% of the total energy utilized. Consequently, CO<sub>2</sub> emissions from conventional buildings in India were estimated to be 98 metric tonnes of CO<sub>2</sub> per million ft<sup>2</sup> in 2014. Solar thermal air conditioning can be the solution to these demands and can contribute to about 15% to 20% of India’s total oil consumption thereby reducing the dependence on fossil fuels. Hence, the main objective of the work is to model and simulate a solar absorption cooling system for GERMI office building located in Gandhinagar, Gujarat, India, using the transient simulation software ‘TRNSYS’. Cooling load estimation and comfort conditions required for the building were determined based on ASHRAE standards. Evacuated tube collectors were selected because of its market availability, ease of manufacturing and proven technology. Single effect absorption chiller was used because of its commercial availability. The effects of storage tank volume, collector area and collector slope were also investigated for parametric optimization. The results of the simulation and parametric analysis are analyzed and presented in the paper.展开更多
The paper presents an improved cellular automaton model according to the feature of evacuation near the outlet. We studied friction and turning factors that affect pedestrian evacuation speed. By using mathematical me...The paper presents an improved cellular automaton model according to the feature of evacuation near the outlet. We studied friction and turning factors that affect pedestrian evacuation speed. By using mathematical methods to derive expressions of friction function and turning function. The average pedestrian outflow of the simulation that includes the effect of both the frictional function and the turning function agrees well with experiment result. On the contrary, the simulation results that only include the effect of the frictional function are not corresponding to the experiment results well. Simulation results show that friction and turning can not be ignored. By analyzing the simulation results, it verified that the model can accurately reflect the actual evacuation process and has practical value.展开更多
A virtual reality system was developed to simulate emergency evacuations during fires. The spreading of the flame and smoke in the virtual fire was modeled based on numerical fire simulations, so that the conditions a...A virtual reality system was developed to simulate emergency evacuations during fires. The spreading of the flame and smoke in the virtual fire was modeled based on numerical fire simulations, so that the conditions are similar to real life. A multi-grid, multi-base-state database model was used to overcome the disadvantages of traditional smoke spreading simulations. Textured images and particle systems provide visualization of the flame and smoke. The system immerses the user in a virtual environment with detailed interactions between the users and the virtual environment. The system can show which evacuation methods are effective for building safety evaluations.展开更多
An evacuation plan helps people move away from an area or a building. To assist rapid evacuation,we present an algorithm to compute the optimal route for each local region. The idea is to reduce congestion and maximiz...An evacuation plan helps people move away from an area or a building. To assist rapid evacuation,we present an algorithm to compute the optimal route for each local region. The idea is to reduce congestion and maximize the number of evacuees arriving at exits in each time span. Our system considers crowd distribution, exit locations, and corridor widths when determining optimal routes. It also simulates crowd movements during route optimization. As a basis,we expect that neighboring crowds who take different evacuation routes should arrive at respective exits at nearly the same time. If this is not the case, our system updates the routes of the slower crowds. As crowd simulation is non-linear, the optimal route is computed in an iterative manner. The system repeats until an optimal state is achieved. In addition to directly computing optimal routes for a situation, our system allows the structure of the situation to be decomposed,and determines the routes in a hierarchical manner.This strategy not only reduces the computational cost but also enables crowds in different regions to evacuate with different priorities. Experimental results,with visualizations, demonstrate the feasibility of our evacuation route optimization method.展开更多
基金Sponsored by the Innovation and Entrepreneurship Training Project for College Students in Beijing(10805136024-XN139-100)Scientific Research Foundation of North China University of Technology(11005136024XN147-56).
文摘By using evacuation simulation technology and taking North China University of Technology as an example,the barrier-free evacuation design scheme for groups with different needs in campus environment was deeply discussed.Based on the data of building layout,population composition,road system and distribution of shelters in the school,a detailed evacuation model was constructed in the Pathfinder emergency evacuation simulation system.By the simulation during the daytime and at night,the total evacuation time of the whole school,evacuation completion time of each building,selection of evacuation paths and shelter utilization were analyzed in detail.The simulation results show that the distribution of shelters on campus is uneven,and their capacity is limited.As a result,the evacuation paths of the disabled,the elderly and children need to be adjusted frequently,which affects the overall evacuation efficiency.In view of this,the optimization strategies of road renovation and entrances of shelters and buildings were put forward from the perspective of space planning.From the perspective of emergency management,it is suggested to improve the campus evacuation infrastructure and strengthen the evacuation drill for teachers and students.These results provide a solid theoretical support for enhancing the construction of campus barrier-free environment and improving the level of emergency management.
基金The 2023 Langfang Science and Technology Support Plan Project:Design and Implementation of Earthquake Disaster Emergency Support Decision System in the Beijing-Tianjin-Hebei Region(Project number:2023013134)。
文摘This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to simulate and optimize evacuation scenarios in various settings,including public venues,residential areas,and urban environments.By integrating real-world data and behavioral models,the simulation accurately represents human movements,decision-making processes,and traffic flow dynamics during evacuation scenarios.The study evaluates the effectiveness of various evacuation strategies,including route planning,crowd behavior,and emergency response coordination,using a scenario-driven approach within the AnyLogic simulation environment.Furthermore,this research contributes to the establishment of optimized emergency response protocols by systematically evaluating and refining evacuation plans.The research frameworks mentioned in the research imply the efficient use of the AnyLogic simulation model to be used in different sectors and fields to enhance the strategies for saving lives and implementing an efficient evacuation management system.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB719705)the National Natural Science Foundation of China(Grant Nos.91224008,91024032,and 71373139)
文摘As a physical model, the cellular automata (CA) model is widely used in many areas, such as stair evacuation. However, existing CA models do not consider evacuees' walk preferences nor psychological status, and the structure of the basic model is unapplicable for the stair structure. This paper is to improve the stair evacuation simulation by addressing these issues, and a new cellular automata model is established. Several evacuees' walk preference and how evacuee's psychology influences their behaviors are introduced into this model. Evacuees' speeds will be influenced by these features. To validate this simulation, two fire drills held in two high-rise buildings are video-recorded. It is found that the simulation results are similar to the fire drill results. The structure of this model is simple, and it is easy to further develop and utilize in different buildings with various kinds of occupants.
文摘In order to study the evacuation behavior of miners during accidents,we analyzed the rational layout of a safe chamber,and improved evacuation efficiency.A visual model of evacuation was developed and used to simulate the evacuation process of mines,given their special underground environments.In our simulation,the working faces of a coal mine and nearby tunnels were divided into 0.5 m×0.5 m grids to reflect the location of occupants and obstacles.Based on a "flow potential of the occupant",we determined the direction of movement and routes of occupants.In the model,evacuation speed changed as a function of crowd density,with an average speed of 1.30 m/s.The model also takes into account detection time of the disaster and the personnel response time.Evacuation time,exit flow rate and evacuation path were obtained by simulation.The results indicate that using simulation technology can present a more visual evacuation process and show the behavior of occupants.Our establishment of a mine safety evacuation system has merit as reference value.
基金Project (20033179802) supported by the Science and Technology Programof China Western Transportation Development
文摘The simulation model Tunev(tunnel evacuation) was developed for people's evacuation in tunnel fire. It contains simple database of the people's behavioral reaction and structure characteristic parameters of tunnel fireproofing. The model can be used to calculate the total evacuation time in various scenes when fire occurs in the different locations of the tunnel. Combined with fire simulation soft ware CFD- POENICS3.5, Tunev model can be used to calculate the fire danger coming time; by comparing with these two kinds of time, it can be used to assess the safety of the evacuation, and the evacuation process also have a dynamic demo. The simulation results show that the Tunev model can be used to predict the reliability of safe evacuation for people in tunnel fire and provide references for people's safe escape scheme. Some relevant concepts of the model were described and an evacuation simulation of a typical tunnel case, i.e. Xuefeng Mountain Tunnel was performed by using this model. And the model's validation and actual aoolication were also described.
基金Study of Emergency Management Technology of Integrated Passenger Transportation Hub in Jiangsu Province,China(No.2012R06)National Natural Science Foundation of China(No.51608114)Shanghai Pujiang Program,China(No.15PJC093)
文摘A simulation study on occupant evacuation in high-speed railway stations (HSRSs) was presented in China. Pathfinder was employed as the simulation platform and a typical HSRS in a medinm-sized city in China was selected for model development. The model was carefully calibrated and validated by comparing simulation results with field data. Evacuation efficiency could be improved with the increased door width while such effect decreased when the door width reached a marginal value. And the marginal value varied under different occupant densities. An exponential function between evacuation lime and occupant density was fitted, indicating that occupant density significantly affected evacuation efficiency. A set of different evacuation strategies were compared, in terms of their evacuation performances. It was found that a balanced door usage would result in more efficient evacuations in HSRSs. Thus occupant flows were suggested to be managed considering door capacity. To avoid potential safety issues caused by such strategy ( e. g. , more occupants could be evacuated from a smaller area designed with higher door capacity ), occupants needed to enhance their awareness of following evacuation guidance instead of panic escape in emergencies. Moreover, such safety issues could also be avoided during the design phase that the evacuation capacity was designed to be proportional to the room capacity for each floor. The results of this study provide valuable information for HSRS design and flow management in China.
文摘Large commercial complexes are large in scale, complex in function, and located in densely populated areas that are prone to casualties due to unfavorable evacuation. To comprehend the safety evacuation of large commercial complex buildings in China, investigate the safety evacuation problems encountered during the evacuation process and the evacuation optimization design strategy, the paper uses Pathfinder to build a simulation model based on literature research and study to simulate the evacuation of personnel in a large commercial complex in Dalian and explore its problems during the evacuation process. The results show that the type of personnel has an effect on the large commercial complex’s evacuation simulation results;the total number of evacuees is non-linearly correlated with the time change curve;some staircases take a long time to evacuate and have a low utilization rate. To improve evacuation efficiency, optimization suggestions for safety exits, evacuation stairs, and evacuation channels are made based on the results.
文摘Regional cities in Japan are at the risk of experiencing big fire accidents or earthquakes every day.However,neither the number nor the capacity of shelters has increased because local governments might not consider them owing to budget shortfall.By contrast,wide-area evacuation simulations can easily provide an antagonizing image of regional urban disasters.After a disaster,the city collapses and the evacuation routes are closed;consequently,evacuees feel anxious and they cannot move as usual.This anxiety behavior has not been considered in previous related studies and simulations.In this study,a wide-area evacuation simulation is developed;this model can not only calculate the possibility of blocking escape routes when the city is broken but also provide safe and more realistic evacuation plans before a disaster occurs by incorporating into the simulation the risk avoidance behaviors of evacuees from road blockage,such as“the route re-seeking behavior”and“the shelter re-selecting behavior”.
基金supported by Shanghai Science and Technology Committee (No. 08515810200)Jiangsu Province Development Foundation (No. BS2007048)
文摘This paper presents a model for simulating crowd evacuation and investigates three widely recognized problems. For the space continuity problem, this paper presents two computation algorithms: one uses grid space to evaluate the coordinates of the obstacle's bounding box and the other employs the geometry rule to establish individual evacuation routes. For the problem of collision, avoidance, and excess among the individuals, this paper computes the generalized force and friction force and then modifies the direction of march to obtain a speed model based on the crowd density and real time speed. For the exit selection problem, this paper establishes a method of selecting the exits by combining the exit's crowd state with the individuals. Finally, a particle system is used to simulate the behavior of crowd evacuation and produces useful test results.
文摘Objective:A computer-based STS(simulative training system) in providing pre-hospital trauma care at a disaster site was applied to teaching nursing students in the Second Military Medical University,China.This article reports on the teaching effectiveness of this system.Methods:Among 92 participants,46 were in the study group and 46 were in the 'control' group. Each student completed a multiple-choice quiz after completing 18 hours(six three-hour sessions) of the study module,and a score was recorded.The simulative training module was completed only by the study group;the 'control' group was assigned in-class discussions for the same amount of time covering the same content as the study group.The final course scores,which included both comprehensive and group task-based tests were compared between these two groups.The study used a descriptive and comparative approach for quantitative data analysis.Tests of independency between the multiple choice scores and the simulation scores were also performed.Finally,anonymous surveys were conducted.Results:The study group performed better than the 'control' group with a significantly higher average score for the group scenario task-based test score,and consequently the study group's final course score was significantly higher than the 'control' group.As per chi-square tests,no significant associations were found between the multiple choice scores and the simulated training scores.The final surveys showed students overwhelmingly agreed that STS training improved their knowledge and skills,their ability to recognize a potential critical event, and their initial response for trauma care at pre-hospital settings.The survey responses of the study group were noteworthy as they indicated that students recognized the importance of simulative training,appreciated the realism of the simulation,and were able to fight/adjust to the stressful feelings in order to focus on the task.Conclusion:Computer-based STS may be an effective teaching model to help students improve their capability in providing pre-hospital trauma care,and in their effectiveness in disaster response.
基金Supported by the Ph.D Programs Foundation of Ministryof Education of China under Grant No.201023041108the Fundamental Research Funds for the Central Universities under Grant No.61004008
文摘In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFC0803300 and 2017YFC0820400)the National Natural Science Foundation of China(Grant No.71673163)
文摘In most situations,staircase is the only egress to evacuate from high-rise buildings.The merging flow on the stair landing has a great influence on the evacuation efficiency.In this paper,we develop an improved cellular automaton model to describe the merging behavior,and the model is validated by a series of real experiments.It is found that the flow rate of simulation results is similar to the drills,which means that the improved model is reasonable and can be used to describe the merging behavior on stairs.Furthermore,some scenarios with different door locations and building floor numbers are simulated by the model.The results show that(i)the best door location is next to the upward staircase;(ii)the total evacuation time and the building floor number are linearly related to each other;(iii)the pedestrians on upper floors have a negative influence on the evacuation flow rate.
基金Project supported by the Sichuan Youth Science and Technology Innovation Research Team Project,China(Grant No.2019JDTD0017)the National Natural Science Foundation of China(Grant No.41702340)the National Science and Technology Major Project of China(Grant No.2017ZX05013001-002).
文摘The floor field model has been widely used in evacuation simulation research based on cellular automata model. However, conventional methods of setting floor field will lead to highly insufficient utilization of the exit area when people gather on one side of the exit. In this study, an extended cellular automata model with modified floor field is proposed to solve this problem. Additionally, a congestion judgment mechanism is integrated in our model, whereby people can synthetically judge the degree of congestion and distance in front of them to determine whether they need to change another exit to evacuate or not. We contrasted the simulation results of the conventional floor field model, the extended model proposed in this paper, and Pathfinder software in a same scenario. It is demonstrated that this extended model can ameliorate the problem of insufficient utilization of the exit area and the trajectory of pedestrian movement and the crowd shape of pedestrians in front of exit in this new model are more realistic than those of the other two models. The findings have implications for modeling pedestrian evacuation.
基金Supported by State Key Laboratory Foundation of China(Grant No.RCS2018ZT009)
文摘The safety of trains,a highly efficient mode of transportation,has attracted significant attention.In the vehicle structure design of a train,the evaluation of the passenger evacuation time is necessary.The establishment of a simulation model is the fastest,most convenient,and practical way to achieve this goal.However,few scholars have focused on the reliability of a passenger train evacuation simulation model.This paper proposes a new validation method based on dynamic time warping and multidimensional scaling.The proposed method validates the dynamic process of a simulation model,provides statistical results,and can be used for small-sample scenarios such as a train evacuation scenario.The results of a case study indicate that the proposed method is an effective and quantitative approach to the validation of simulation models in a dynamic process.Thus,this paper describes the influence of the train structure size on an evacuation based on the results of simulation experiments.The structural size factors include the door width,aisle width,and seat pitch.The experiment results indicate that a wide aisle and reasonable seat pitch can promote a proper evacuation.In addition,a normal train door width has no effect on an evacuation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52104186,71904006,U1933105,and 72174189)the Fundamental Research Funds for the Central Universities (Grant Nos.DUT21JC01 and DUT2020TB03)the Fundamental Research Funds for the Central Universities (Grant No.WK2320000050)。
文摘Building exit as a bottleneck structure is the last and the most congested stage in building evacuation.It is well known that obstacles at the exit affect the evacuation process,but few researchers pay attention to the effect of stationary pedestrians(the elderly with slow speed,the injured,and the static evacuation guide)as obstacles at the exit on the evacuation process.This paper explores the influence of the presence of a stationary pedestrian as an obstacle at the exit on the evacuation from experiments and simulations.We use a software,Pathfinder,based on the agent-based model to study the effect of ratios of exit width(D)to distance(d)between the static pedestrian and the exit,the asymmetric structure by shifting the static pedestrian upward,and types of obstacles on evacuation.Results show that the evacuation time of scenes with a static pedestrian is longer than that of scenes with an obstacle due to the unexpected hindering effect of the static pedestrian.Different ratios of D/d have different effects on evacuation efficiency.Among the five D/d ratios in this paper,the evacuation efficiency is the largest when d is equal to 0.75D,and the existence of the static pedestrian has a positive impact on evacuation in this condition.The influence of the asymmetric structure of the static pedestrian on evacuation efficiency is affected by D/d.This study can provide a theoretical basis for crowd management and evacuation plan near the exit of complex buildings and facilities.
文摘Commercial building sector accounts for 8% of the total electricity consumption in India. Cooling activities (HVAC) in commercial buildings consume 55% of the total energy utilized. Consequently, CO<sub>2</sub> emissions from conventional buildings in India were estimated to be 98 metric tonnes of CO<sub>2</sub> per million ft<sup>2</sup> in 2014. Solar thermal air conditioning can be the solution to these demands and can contribute to about 15% to 20% of India’s total oil consumption thereby reducing the dependence on fossil fuels. Hence, the main objective of the work is to model and simulate a solar absorption cooling system for GERMI office building located in Gandhinagar, Gujarat, India, using the transient simulation software ‘TRNSYS’. Cooling load estimation and comfort conditions required for the building were determined based on ASHRAE standards. Evacuated tube collectors were selected because of its market availability, ease of manufacturing and proven technology. Single effect absorption chiller was used because of its commercial availability. The effects of storage tank volume, collector area and collector slope were also investigated for parametric optimization. The results of the simulation and parametric analysis are analyzed and presented in the paper.
文摘The paper presents an improved cellular automaton model according to the feature of evacuation near the outlet. We studied friction and turning factors that affect pedestrian evacuation speed. By using mathematical methods to derive expressions of friction function and turning function. The average pedestrian outflow of the simulation that includes the effect of both the frictional function and the turning function agrees well with experiment result. On the contrary, the simulation results that only include the effect of the frictional function are not corresponding to the experiment results well. Simulation results show that friction and turning can not be ignored. By analyzing the simulation results, it verified that the model can accurately reflect the actual evacuation process and has practical value.
基金Tsinghua University-Hong Kong Polytechnic Univer-sity Joint Project (No. 0210HK07)
文摘A virtual reality system was developed to simulate emergency evacuations during fires. The spreading of the flame and smoke in the virtual fire was modeled based on numerical fire simulations, so that the conditions are similar to real life. A multi-grid, multi-base-state database model was used to overcome the disadvantages of traditional smoke spreading simulations. Textured images and particle systems provide visualization of the flame and smoke. The system immerses the user in a virtual environment with detailed interactions between the users and the virtual environment. The system can show which evacuation methods are effective for building safety evaluations.
基金supported in part by “the Ministry of Science and Technology of Taiwan” under Grant MOST 102-2221-E-009-083MY3, Grant MOST 103-2221-E-009-122-MY3, and Grant MOST 104-2221-E-009-051-MY3
文摘An evacuation plan helps people move away from an area or a building. To assist rapid evacuation,we present an algorithm to compute the optimal route for each local region. The idea is to reduce congestion and maximize the number of evacuees arriving at exits in each time span. Our system considers crowd distribution, exit locations, and corridor widths when determining optimal routes. It also simulates crowd movements during route optimization. As a basis,we expect that neighboring crowds who take different evacuation routes should arrive at respective exits at nearly the same time. If this is not the case, our system updates the routes of the slower crowds. As crowd simulation is non-linear, the optimal route is computed in an iterative manner. The system repeats until an optimal state is achieved. In addition to directly computing optimal routes for a situation, our system allows the structure of the situation to be decomposed,and determines the routes in a hierarchical manner.This strategy not only reduces the computational cost but also enables crowds in different regions to evacuate with different priorities. Experimental results,with visualizations, demonstrate the feasibility of our evacuation route optimization method.