The objective of this experimentwas to develop a new computer-controlled simulated digestion system to predict the digestible energy(DE)and metabolizable energy(ME)of unconventional plant protein meals for growing pig...The objective of this experimentwas to develop a new computer-controlled simulated digestion system to predict the digestible energy(DE)and metabolizable energy(ME)of unconventional plant protein meals for growing pigs.Nine meals tested included 1 source of rapeseed meal,4 sources of cottonseed meal,2 sources of sunflower meal,and 2 sources of peanut meal.Twenty growing pigs(Duroc[LandraceLarge White])with an initial body weight(BW)of 41.7±2.6 kg were allotted to a replicated 103 incomplete Latin square design to determine the DE and ME of 1 basal diet and 9 experimental diets formulated with 9 unconventional plant protein meals.The DE andMEvalues of unconventional plant protein meals were calculated by the difference method.The in vitro digestible energy(IVDE)of 1 basal diet,9 experimental diets,and 9 unconventional plant protein meals were determined with 5 replicates of each sample in a complete randomized arrangement.The IVDE/DE or IVDE/ME ranged from 0.96 to 0.98 or 1.00 to 1.01,and the correlation coefficient between IVDE and DE or MEwas 0.97 or 0.98 in 10 experimental diets.Accordingly,the IVDE/DE or IVDE/ME ranged from 0.86 to 1.05 or 0.96 to 1.20,and the correlation coefficient between IVDE and DE orME was 0.92 or 0.91 in 9 unconventional plant protein meals.The coefficient of variation(CV)of IVDE was less than that of DE and ME in the experimental diets(0.43%,0.80%,and 0.97%for CV of IVDE,DE and ME,respectively)and unconventional plant protein meals(0.92%,4.84%,and 6.33%for CV of IVDE,DE and ME,respectively).The regression equations to predict DE from IVDE in 10 experimental diets and 9 unconventional plant protein meals were DE=0.8851IVDE t539(R^(2)=0.9411,residual standard deviation[RSD]=23 kcal/kg DM,P<0.01)and DE=0.9880IVDE t 166(R^(2)=0.8428,RSD=182 kcal/kg DM,P<0.01),respectively.Therewas no statistical difference in the slopes(P=0.82)or intercepts(P=1.00)of these 2 equations.Thus,10 diets and 9 unconventional plant protein meals were pooled to establish the regression equation of DE on IVDE as:DE=0.9813IVDE t187(R^(2)=0.9120,RSD=118 kcal/kg DM,P<0.01).The regression equations to predictME from IVDE in 10 experimental diets and 9 unconventional plant protein meals were ME=0.9559IVDE t146(R^(2)=0.9697,RSD=18 kcal/kg DM,P<0.01)and ME=0.9388IVDEt3(R^(2)=0.8282,RSD=182 kcal/kg DM,P<0.01),respectively.Therewas no statistical difference in slopes(P=0.97)but significant difference between the intercepts(P=0.02)of these 2 equations.Our results indicate IVDE has similar response to the DE but different response to the ME in 10 experimental diets and 9 unconventional plant protein meals.Therefore,IVDE is moresuitable to predict DE than ME of diets and unconventional plant protein meals for growing pigs.展开更多
An isotope dilution ultra-performance liquid chromatography-triple quadrupole mass spectrometry method was developed to simultaneously detect two typical kinds ofα,β-unsaturated aldehydes,namely 4-hydroxy-2-hexenal(...An isotope dilution ultra-performance liquid chromatography-triple quadrupole mass spectrometry method was developed to simultaneously detect two typical kinds ofα,β-unsaturated aldehydes,namely 4-hydroxy-2-hexenal(4-HHE)and 4-hydroxy-2-nonenal(4-HNE),in foods.The proposed method exhibited a linear range of 10-1000 ng/mL with a limit of detection of 0.1-2.0 ng/g and a limit of quantification of 0.3-5.0 ng/g.The recovery rates of these typical toxic aldehydes(i.e.,4-HHE,4-HNE)and their d3-labeled analogues were 91.54%-105.12%with a low matrix effect.Furthermore,this proposed method was successfully applied to a real frying system and a simulated digestion system,wherein the contents of 4-HHE and 4-HNE were determined for both.Overall,the obtained results provide strong support for further research into the production of 4-HHE and 4-HNE resulting from foods during oil digestion and frying.展开更多
To examine the effect of mechanical processing for plant-based materials on antioxidant properties during digestion,relationships between the size of pulverized plant tissue and changes in antioxidant activities durin...To examine the effect of mechanical processing for plant-based materials on antioxidant properties during digestion,relationships between the size of pulverized plant tissue and changes in antioxidant activities during simulated in vitro digestion were investigated.The citrus peel tissue was pulverized and classified into four powder fractions followed their particle size distributions as 125−180m,180−355m,355−500m and 500−710m.These fractions were regarded as a plant tissue model with various degrees of cell damages.Powder samples were collected during the digestion and measured their particle sizes and colors.Besides,total phenolic content and antioxidant activities of digested fluid were also evaluated.The results showed that the powder color of smaller particles were significantly changed than the bigger ones.The bio-properties of digested fluid for the bigger particle sizes comparatively retained more than smaller ones at the simulated gastric stage.It also showed mostly stable during simulated gastric or small intestinal digestion stage.This suggested that the release of bioactive compounds from plant tissues during digestion could be related to their structural attributes such as degrees of cell damages which could be affected by processing methods and conditions.展开更多
OBJECTIVE Epimedium is rich in a variety of beneficial active ingredients,and has been widely used in the ethnopharmacological practices,however,its biotransformation in gastrointestinal digestions remain unclear.This...OBJECTIVE Epimedium is rich in a variety of beneficial active ingredients,and has been widely used in the ethnopharmacological practices,however,its biotransformation in gastrointestinal digestions remain unclear.This study aimed to investigate the dynamic changes of components and biological activity of Epimedium in the in vitro simulated digestion and subsequent human faecal fermentation.METHODS The models of in vitro simulated saliva,gastric and intestinal digestion,as well as colonic fermentation were constructed to simulate the digestion process of Epimedium.The dynamic changes of components of Epimedium during the simulated digestions in vitro and subsequent human faecal fermentation were investigated by UPLC-MS,HPLC-DAD combined with principal component analysis(PCA)and multi-ingredient quantitative analysis.RESULTS A variety of metabolites with high contents were produced after 0.5 h of intestinal digestion and colonic fermentation 0.5 h.Application of PCA to HPLC data showed the obvious separation of colonic fermentation 0.5 h stage samples from other colonic fermentation stages samples(24,48 and 72 h).Additionally,non-digestion and saliva digestion stage samples clustered together,and there was obvious separation between intestinal digestion samples and gastric digestion samples.The contents of epimedium C,icariin and baohuside I all increased significantly after intestinal digestion[58.70±7.08,47.15±5.68 and(12.78±0.55)mg·g^(-1)]compared with gastric digestion[29.00±5.65,17.40±4.55 and(2.77±0.19)mg·g^(-1)].There were significant differences between sample after 0.5 h of colonic fermentation[64.22±9.32,51.26±6.33 and(16.68±3.19)mg·g^(-1)]and other time points(24,48 and 72 h)in components and the contents of active ingredient,and the content of these components all decreased with the fermentation time.The ability of scavenging ABTS free radicals[IC50=(0.29±0.02)g·L^(-1)]increased significantly compared with gastric digestion[(1.57±0.02)g·L^(-1)],and after 0.5 h of colonic fermentation,the ability also increased significantly.CONCLUSION Gastrointestinal digestion had a significant impact on the contents of active components in Epimedium,and the metabolism of these components mainly occurred in the colon.The intestinal digestion and colonic fermentation significantly improved the anti-ABTS activity of epimedium.展开更多
Peptides from Alcalase-hydrolyzed soybean protein hydrolysate(SPH)may hold the potential as natural antioxidants.In addition,the effect of human gastrointestinal(GI)tract on peptide bioavailability needs to be explore...Peptides from Alcalase-hydrolyzed soybean protein hydrolysate(SPH)may hold the potential as natural antioxidants.In addition,the effect of human gastrointestinal(GI)tract on peptide bioavailability needs to be explored.In this study,the impact of simulated GI digestion and transepithelial transport on various antioxidant properties of SPH were investigated.SPH displayed DPPH radical scavenging(IC50=4.22 mg/m L),ABTS·+radical scavenging(IC50=2.93 mg/m L),reducing power and metal ion-chelating activities(IC50=0.67 mg/m L).Furthermore,SPH significantly(P<0.05)inhibited the generation of intracellular reactive oxygen species(ROS)in Caco-2 cells.After simulated GI digestion,the antioxidant properties of SPH were enhanced,except for a decrease in ABTS·+radical scavenging activity.After transepithelial transport,the permeates maintained partial antioxidant activity and the LC-MS/MS data further identified the absorbed soybean peptides.These results suggest that SPH contains the antioxidant peptides that are potentially bioavailable and can be regarded as a promising source of functional food ingredients.展开更多
Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysacch...Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine.展开更多
Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumin...Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumina digestion properties are significantly improved after suspension roasting.Under optimal conditions(t=70 min,T=280°C,w(CaO)=8%and Nk=245 g/L),the digestion ratios are 94.45%and 92.08%for the suspension-roasted and muffle-roasted ore,respectively,and the apparent activation energies are 63.26 and 64.24 kJ/mol,respectively.Two crystal models were established by Materials Studio based on the XRD patterns.The DFT simulation shows that the existing Al—O bands after suspension roasting can improve alumina digestion.The(104)and(113)planes of Al2O3 after suspension roasting are found to combine with NaOH more easily than those of Al2O3 treated in a muffle furnace.展开更多
生物可及性是5-甲基四氢叶酸钙(5-methyltetrahydrocalcium folate,5-MTHF)发挥生物功能的前提,易受到食品组分的影响。该文以乳清浓缩蛋白(whey protein concentrate,WPC)和5-MTHF为研究对象,利用体外消化系统,探究WPC在不同条件下(浓...生物可及性是5-甲基四氢叶酸钙(5-methyltetrahydrocalcium folate,5-MTHF)发挥生物功能的前提,易受到食品组分的影响。该文以乳清浓缩蛋白(whey protein concentrate,WPC)和5-MTHF为研究对象,利用体外消化系统,探究WPC在不同条件下(浓度、加工方式、胃肠pH、消化时间)对5-MTHF生物可及性的影响,并采用胶体粒径电位仪与激光共聚焦观察消化前后粒子微观结构的变化。结果表明,在胃消化阶段,WPC可将5-MTHF紧密包裹,较好地保护了5-MTHF,并成功转运至肠消化阶段完成释放,提高了5-MTHF的生物可及性。同时,WPC浓度、WPC加工方式、胃肠pH、消化时间等均不同程度影响5-MTHF的生物可及性和粒径、电位。其中,在胃消化阶段,各WPC-5-MTHF组均未检测出5-MTHF,生物可及性为0。在肠消化阶段,WPC-5-MTHF组的生物可及性随WPC浓度的增加而提高,较5-MTHF组的生物可及性提高了11.1%~19.61%;超声处理组、高压均质组、加热处理组的生物可及性较未加工处理组分别减少了8.49%、9.52%、8.75%;在肠pH为7、消化时间为5 h时,WPC-5-MTHF组拥有最佳生物可及性,分别为45.17%、42.32%,与5-MTHF组相比,提高到2倍左右。粒径和电位的结果显示,WPC-5-MTHF组较WPC拥有更小的粒径,更大的电位绝对值,并且WPC-5-MTHF结构的变化会引起消化特性的改变,该研究为5-甲基四氢叶酸钙在乳制品中的应用提供理论指导。展开更多
Immunoglobulin Y(Ig Y)is an effective orally administered antibody used to protect against various intestinal pathogens,but which cannot tolerate the acidic gastric environment.In this study,Ig Y was microencapsulated...Immunoglobulin Y(Ig Y)is an effective orally administered antibody used to protect against various intestinal pathogens,but which cannot tolerate the acidic gastric environment.In this study,Ig Y was microencapsulated by alginate(ALG)and coated with chitooligosaccharide(COS).A response surface methodology was used to optimize the formulation,and a simulated gastrointestinal(GI)digestion(SGID)system to evaluate the controlled release of microencapsulated Ig Y.The microcapsule formulation was optimized as an ALG concentration of 1.56%(15.6 g/L),COS level of 0.61%(6.1 g/L),and Ig Y/ALG ratio of 62.44%(mass ratio).The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%,a loading capacity of 33.75%,and an average particle size of 588.75μm.Under this optimum formulation,the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface,and thus the GI release rate of encapsulated Ig Y was significantly reduced.The release of encapsulated Ig Y during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions,respectively.The microcapsule also allowed the Ig Y to retain 84.37%immune-activity after 4 h simulated GI digestion,significantly higher than that for unprotected Ig Y(5.33%).This approach could provide an efficient way to preserve Ig Y and improve its performance in the GI tract.展开更多
The objectives of this research work were to evaluate the effect of in vitro gastrointestinal digestion (GIT) on melon peel juice (MPJ) powder from fruit processing industry by-products,considering (i) the recovery an...The objectives of this research work were to evaluate the effect of in vitro gastrointestinal digestion (GIT) on melon peel juice (MPJ) powder from fruit processing industry by-products,considering (i) the recovery and accessibility indexes,(ii) the changes on antioxidant activity,and (iii) the prebiotic effect.Throughout exposition to GIT conditions a decrease on the total phenolic content (TPC = 65.31%) and antioxidant activity by ABTS = 39.77% and DPPH = 45.91% were observed.However,these both parameters exhibited stable accessibility,accounting with 81.89%,76.55%,and 54.07% for TPC,ABTS and DPPH,respectively.After gastrointestinal digestion,the non-absorbed fraction exhibited a positive impact on the growth of Bifidobacterium and Lactobacillus strains,possibly associated with the high content of simple sugar (glucose and fructose).This fraction also showed to be safe on Caco-2 intestinal cells.These findings suggest that MPJ might be used as a potential food functional ingredient.展开更多
Interaction between dietary polyphenol and proteins including digestive enzymes may result in reduced digestibility of food macronutrients, thus lowering absorption of nutrients that contributing to high energy accumu...Interaction between dietary polyphenol and proteins including digestive enzymes may result in reduced digestibility of food macronutrients, thus lowering absorption of nutrients that contributing to high energy accumulation in human body. The objective of this study was to investigate the effect of grape seed polyphenol extract (GSPE) on the digestibility of starch, food lipid and food protein by digestive enzymes such as u-amylase, lipase, pepsin and trypsin. The digestion of each substrate was conducted at the optimal pH and temperature of specific enzyme. Bread containing different amount of grape pomace was used as a real food model and its digestion was conducted under simulated digestion condition. Concentrations of reducing sugar, fatty acid and amino acids in enzyme digested mixtures were determined as indicators of starch, lipid and protein digestions, respectively. Results indicate that GSPE significantly inhibited the digestion of starch, cooking oil and casein, but did not inhibit digestion of whey protein and egg white protein. Instead, the digestion of egg white and whey protein by trypsin was moderately enhanced in the presence of GSPE. However, under simulated human digestion condition, the grape pomace in the bread significantly reduced the digestibility of bread starch and protein.展开更多
Lutein is a nutraceutical compound that promotes human eye health and prevents neurodegenerative diseases.The oral bioavailability of lutein is affected by both extrinsic and intrinsic factors in the host.Although hyd...Lutein is a nutraceutical compound that promotes human eye health and prevents neurodegenerative diseases.The oral bioavailability of lutein is affected by both extrinsic and intrinsic factors in the host.Although hydrophobicity of the compound is further challenging,its lipophilicity can be utilized to micellize and thereby improve its oral bioavailability.Currently,available data on the effects of dietary fats on lutein micellization and permeation is limited and needs further exploration.In this study,the influence of 17 carrier type edible oils on lutein micellization and permeation,was investigated in a simulated digestion model.The overall effectiveness of these oils to permeate micellized lutein was attributed to its Fatty Acid(FA)profile.While 94%of the edible oils exhibited a positive influence on the permeation of micellized lutein,the micellization and permeation efficiency of these oils were significantly(p≤0.05)modulated by the saturation of FA in the order Saturated(SFA)>Mono-Unsaturated(MUFA)>Poly-Unsaturated(PUFA).The highest apparent permeability coefficient was exhibited by lutein micellized in ghee(3.01×10^(-6) cm/s)and butter(2.93×10^(-6) cm/s),which was 1.28 and 1.24 folds higher than lutein alone(2.35×10^(-6) cm/s)respectively.Exceptionally MUFA rich olive oil and PUFA rich flaxseed oil improved lutein permeation by 1.19(2.80×10^(-6) cm/s)and 1.14 folds(2.69×10^(-6) cm/s)respectively.This study is the first to report the influence of saturated fatty acids on micellization and permeation of lutein.Furthermore,the outcomes of this study offer the field of lutein delivery systems a fresh perspective.展开更多
基金theCentral Public-Interest Scientific Institution Basal Research Fund(No.2021-YWF-ZYSQ-09)the Agricultural Science and Technology Innovation Program,Chinese Academy of Agricultural Sciences(ASTIP-IAS07)Wen’s Food Group Co.Ltd(2018-YF-01).
文摘The objective of this experimentwas to develop a new computer-controlled simulated digestion system to predict the digestible energy(DE)and metabolizable energy(ME)of unconventional plant protein meals for growing pigs.Nine meals tested included 1 source of rapeseed meal,4 sources of cottonseed meal,2 sources of sunflower meal,and 2 sources of peanut meal.Twenty growing pigs(Duroc[LandraceLarge White])with an initial body weight(BW)of 41.7±2.6 kg were allotted to a replicated 103 incomplete Latin square design to determine the DE and ME of 1 basal diet and 9 experimental diets formulated with 9 unconventional plant protein meals.The DE andMEvalues of unconventional plant protein meals were calculated by the difference method.The in vitro digestible energy(IVDE)of 1 basal diet,9 experimental diets,and 9 unconventional plant protein meals were determined with 5 replicates of each sample in a complete randomized arrangement.The IVDE/DE or IVDE/ME ranged from 0.96 to 0.98 or 1.00 to 1.01,and the correlation coefficient between IVDE and DE or MEwas 0.97 or 0.98 in 10 experimental diets.Accordingly,the IVDE/DE or IVDE/ME ranged from 0.86 to 1.05 or 0.96 to 1.20,and the correlation coefficient between IVDE and DE orME was 0.92 or 0.91 in 9 unconventional plant protein meals.The coefficient of variation(CV)of IVDE was less than that of DE and ME in the experimental diets(0.43%,0.80%,and 0.97%for CV of IVDE,DE and ME,respectively)and unconventional plant protein meals(0.92%,4.84%,and 6.33%for CV of IVDE,DE and ME,respectively).The regression equations to predict DE from IVDE in 10 experimental diets and 9 unconventional plant protein meals were DE=0.8851IVDE t539(R^(2)=0.9411,residual standard deviation[RSD]=23 kcal/kg DM,P<0.01)and DE=0.9880IVDE t 166(R^(2)=0.8428,RSD=182 kcal/kg DM,P<0.01),respectively.Therewas no statistical difference in the slopes(P=0.82)or intercepts(P=1.00)of these 2 equations.Thus,10 diets and 9 unconventional plant protein meals were pooled to establish the regression equation of DE on IVDE as:DE=0.9813IVDE t187(R^(2)=0.9120,RSD=118 kcal/kg DM,P<0.01).The regression equations to predictME from IVDE in 10 experimental diets and 9 unconventional plant protein meals were ME=0.9559IVDE t146(R^(2)=0.9697,RSD=18 kcal/kg DM,P<0.01)and ME=0.9388IVDEt3(R^(2)=0.8282,RSD=182 kcal/kg DM,P<0.01),respectively.Therewas no statistical difference in slopes(P=0.97)but significant difference between the intercepts(P=0.02)of these 2 equations.Our results indicate IVDE has similar response to the DE but different response to the ME in 10 experimental diets and 9 unconventional plant protein meals.Therefore,IVDE is moresuitable to predict DE than ME of diets and unconventional plant protein meals for growing pigs.
基金This work was supported by the National Natural Science Fund of China(32001622)the Guangdong Basic and Applied Research Foundation(2021A1515011060)+1 种基金the Fundamental and Applied Basic Research Fund for Young Scholars of Guangdong Province(2019A1515110823)the Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Foods(2021B1212040013).
文摘An isotope dilution ultra-performance liquid chromatography-triple quadrupole mass spectrometry method was developed to simultaneously detect two typical kinds ofα,β-unsaturated aldehydes,namely 4-hydroxy-2-hexenal(4-HHE)and 4-hydroxy-2-nonenal(4-HNE),in foods.The proposed method exhibited a linear range of 10-1000 ng/mL with a limit of detection of 0.1-2.0 ng/g and a limit of quantification of 0.3-5.0 ng/g.The recovery rates of these typical toxic aldehydes(i.e.,4-HHE,4-HNE)and their d3-labeled analogues were 91.54%-105.12%with a low matrix effect.Furthermore,this proposed method was successfully applied to a real frying system and a simulated digestion system,wherein the contents of 4-HHE and 4-HNE were determined for both.Overall,the obtained results provide strong support for further research into the production of 4-HHE and 4-HNE resulting from foods during oil digestion and frying.
文摘To examine the effect of mechanical processing for plant-based materials on antioxidant properties during digestion,relationships between the size of pulverized plant tissue and changes in antioxidant activities during simulated in vitro digestion were investigated.The citrus peel tissue was pulverized and classified into four powder fractions followed their particle size distributions as 125−180m,180−355m,355−500m and 500−710m.These fractions were regarded as a plant tissue model with various degrees of cell damages.Powder samples were collected during the digestion and measured their particle sizes and colors.Besides,total phenolic content and antioxidant activities of digested fluid were also evaluated.The results showed that the powder color of smaller particles were significantly changed than the bigger ones.The bio-properties of digested fluid for the bigger particle sizes comparatively retained more than smaller ones at the simulated gastric stage.It also showed mostly stable during simulated gastric or small intestinal digestion stage.This suggested that the release of bioactive compounds from plant tissues during digestion could be related to their structural attributes such as degrees of cell damages which could be affected by processing methods and conditions.
基金Incubation Project on State Key Laboratory of Biological Resources and Ecological Environment of Qinba Areas,China(SLGPT2019KF04-04)and the ERDF through the COMPETE2020-Programa Operacional Competitividade e Internacionalização(POCI),Portugal。
文摘OBJECTIVE Epimedium is rich in a variety of beneficial active ingredients,and has been widely used in the ethnopharmacological practices,however,its biotransformation in gastrointestinal digestions remain unclear.This study aimed to investigate the dynamic changes of components and biological activity of Epimedium in the in vitro simulated digestion and subsequent human faecal fermentation.METHODS The models of in vitro simulated saliva,gastric and intestinal digestion,as well as colonic fermentation were constructed to simulate the digestion process of Epimedium.The dynamic changes of components of Epimedium during the simulated digestions in vitro and subsequent human faecal fermentation were investigated by UPLC-MS,HPLC-DAD combined with principal component analysis(PCA)and multi-ingredient quantitative analysis.RESULTS A variety of metabolites with high contents were produced after 0.5 h of intestinal digestion and colonic fermentation 0.5 h.Application of PCA to HPLC data showed the obvious separation of colonic fermentation 0.5 h stage samples from other colonic fermentation stages samples(24,48 and 72 h).Additionally,non-digestion and saliva digestion stage samples clustered together,and there was obvious separation between intestinal digestion samples and gastric digestion samples.The contents of epimedium C,icariin and baohuside I all increased significantly after intestinal digestion[58.70±7.08,47.15±5.68 and(12.78±0.55)mg·g^(-1)]compared with gastric digestion[29.00±5.65,17.40±4.55 and(2.77±0.19)mg·g^(-1)].There were significant differences between sample after 0.5 h of colonic fermentation[64.22±9.32,51.26±6.33 and(16.68±3.19)mg·g^(-1)]and other time points(24,48 and 72 h)in components and the contents of active ingredient,and the content of these components all decreased with the fermentation time.The ability of scavenging ABTS free radicals[IC50=(0.29±0.02)g·L^(-1)]increased significantly compared with gastric digestion[(1.57±0.02)g·L^(-1)],and after 0.5 h of colonic fermentation,the ability also increased significantly.CONCLUSION Gastrointestinal digestion had a significant impact on the contents of active components in Epimedium,and the metabolism of these components mainly occurred in the colon.The intestinal digestion and colonic fermentation significantly improved the anti-ABTS activity of epimedium.
基金the financial support received from National Natural Science Foundation of China(No.31430067 and 31601475)China Postdoctoral Science Foundation funded project(No.2017M610200)Postdoctoral Foundation of Heilongjiang Province(No.LBH-Z17011)
文摘Peptides from Alcalase-hydrolyzed soybean protein hydrolysate(SPH)may hold the potential as natural antioxidants.In addition,the effect of human gastrointestinal(GI)tract on peptide bioavailability needs to be explored.In this study,the impact of simulated GI digestion and transepithelial transport on various antioxidant properties of SPH were investigated.SPH displayed DPPH radical scavenging(IC50=4.22 mg/m L),ABTS·+radical scavenging(IC50=2.93 mg/m L),reducing power and metal ion-chelating activities(IC50=0.67 mg/m L).Furthermore,SPH significantly(P<0.05)inhibited the generation of intracellular reactive oxygen species(ROS)in Caco-2 cells.After simulated GI digestion,the antioxidant properties of SPH were enhanced,except for a decrease in ABTS·+radical scavenging activity.After transepithelial transport,the permeates maintained partial antioxidant activity and the LC-MS/MS data further identified the absorbed soybean peptides.These results suggest that SPH contains the antioxidant peptides that are potentially bioavailable and can be regarded as a promising source of functional food ingredients.
基金supported by the Province Natural Science Foundation of Hunan,China (2022JJ5410)Special Project on Modern Agricultural Industrial Technology System Construction of Hunan,China (2022-67)。
文摘Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine.
基金Projects(U1812402,51774102,51574095,51664005)supported by the National Natural Science Foundation of ChinaProjects([2015]4005,[2017]5788,[2017]5626,KY(2015)334)supported by Talents of Guizhou Science and Technology Cooperation Platform,China。
文摘Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumina digestion properties are significantly improved after suspension roasting.Under optimal conditions(t=70 min,T=280°C,w(CaO)=8%and Nk=245 g/L),the digestion ratios are 94.45%and 92.08%for the suspension-roasted and muffle-roasted ore,respectively,and the apparent activation energies are 63.26 and 64.24 kJ/mol,respectively.Two crystal models were established by Materials Studio based on the XRD patterns.The DFT simulation shows that the existing Al—O bands after suspension roasting can improve alumina digestion.The(104)and(113)planes of Al2O3 after suspension roasting are found to combine with NaOH more easily than those of Al2O3 treated in a muffle furnace.
文摘生物可及性是5-甲基四氢叶酸钙(5-methyltetrahydrocalcium folate,5-MTHF)发挥生物功能的前提,易受到食品组分的影响。该文以乳清浓缩蛋白(whey protein concentrate,WPC)和5-MTHF为研究对象,利用体外消化系统,探究WPC在不同条件下(浓度、加工方式、胃肠pH、消化时间)对5-MTHF生物可及性的影响,并采用胶体粒径电位仪与激光共聚焦观察消化前后粒子微观结构的变化。结果表明,在胃消化阶段,WPC可将5-MTHF紧密包裹,较好地保护了5-MTHF,并成功转运至肠消化阶段完成释放,提高了5-MTHF的生物可及性。同时,WPC浓度、WPC加工方式、胃肠pH、消化时间等均不同程度影响5-MTHF的生物可及性和粒径、电位。其中,在胃消化阶段,各WPC-5-MTHF组均未检测出5-MTHF,生物可及性为0。在肠消化阶段,WPC-5-MTHF组的生物可及性随WPC浓度的增加而提高,较5-MTHF组的生物可及性提高了11.1%~19.61%;超声处理组、高压均质组、加热处理组的生物可及性较未加工处理组分别减少了8.49%、9.52%、8.75%;在肠pH为7、消化时间为5 h时,WPC-5-MTHF组拥有最佳生物可及性,分别为45.17%、42.32%,与5-MTHF组相比,提高到2倍左右。粒径和电位的结果显示,WPC-5-MTHF组较WPC拥有更小的粒径,更大的电位绝对值,并且WPC-5-MTHF结构的变化会引起消化特性的改变,该研究为5-甲基四氢叶酸钙在乳制品中的应用提供理论指导。
基金Project supported by the National Key Research and Development Program of China(No.2018YFD0400305)the Modern Agro-industry Technology Research System of China(No.CARS-40-K26)the“One Belt and One Road”International Science and Technology Cooperation Program of Zhejiang,China(No.2019C04022)。
文摘Immunoglobulin Y(Ig Y)is an effective orally administered antibody used to protect against various intestinal pathogens,but which cannot tolerate the acidic gastric environment.In this study,Ig Y was microencapsulated by alginate(ALG)and coated with chitooligosaccharide(COS).A response surface methodology was used to optimize the formulation,and a simulated gastrointestinal(GI)digestion(SGID)system to evaluate the controlled release of microencapsulated Ig Y.The microcapsule formulation was optimized as an ALG concentration of 1.56%(15.6 g/L),COS level of 0.61%(6.1 g/L),and Ig Y/ALG ratio of 62.44%(mass ratio).The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%,a loading capacity of 33.75%,and an average particle size of 588.75μm.Under this optimum formulation,the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface,and thus the GI release rate of encapsulated Ig Y was significantly reduced.The release of encapsulated Ig Y during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions,respectively.The microcapsule also allowed the Ig Y to retain 84.37%immune-activity after 4 h simulated GI digestion,significantly higher than that for unprotected Ig Y(5.33%).This approach could provide an efficient way to preserve Ig Y and improve its performance in the GI tract.
基金National Council of Science and Technology(CONACyT,Mexico)for PhD fellowship support granted to G´omez-García Ricardothe project MultiBiorefinery:Estrat´egias multiuso para a valorizaç˜ao de uma gama alargada de subprodutos agroflorestais e das pescas:Um passo em frente na criaç˜ao de uma biorrefinaria"financiado pelo Programa Operacional Competitividade e Internacionalizaç˜ao(POCI-01-0145-FEDER-016403)e pelo Programa Operacional Regional de Lisboa(LISBOA-01-0145-FEDER-016403)na sua componente FEDER e pela Fundaç˜ao para a Ciˆencia e Tecnologia,I.P.na componente nacional(SAICTPAC/0040/2015).
文摘The objectives of this research work were to evaluate the effect of in vitro gastrointestinal digestion (GIT) on melon peel juice (MPJ) powder from fruit processing industry by-products,considering (i) the recovery and accessibility indexes,(ii) the changes on antioxidant activity,and (iii) the prebiotic effect.Throughout exposition to GIT conditions a decrease on the total phenolic content (TPC = 65.31%) and antioxidant activity by ABTS = 39.77% and DPPH = 45.91% were observed.However,these both parameters exhibited stable accessibility,accounting with 81.89%,76.55%,and 54.07% for TPC,ABTS and DPPH,respectively.After gastrointestinal digestion,the non-absorbed fraction exhibited a positive impact on the growth of Bifidobacterium and Lactobacillus strains,possibly associated with the high content of simple sugar (glucose and fructose).This fraction also showed to be safe on Caco-2 intestinal cells.These findings suggest that MPJ might be used as a potential food functional ingredient.
文摘Interaction between dietary polyphenol and proteins including digestive enzymes may result in reduced digestibility of food macronutrients, thus lowering absorption of nutrients that contributing to high energy accumulation in human body. The objective of this study was to investigate the effect of grape seed polyphenol extract (GSPE) on the digestibility of starch, food lipid and food protein by digestive enzymes such as u-amylase, lipase, pepsin and trypsin. The digestion of each substrate was conducted at the optimal pH and temperature of specific enzyme. Bread containing different amount of grape pomace was used as a real food model and its digestion was conducted under simulated digestion condition. Concentrations of reducing sugar, fatty acid and amino acids in enzyme digested mixtures were determined as indicators of starch, lipid and protein digestions, respectively. Results indicate that GSPE significantly inhibited the digestion of starch, cooking oil and casein, but did not inhibit digestion of whey protein and egg white protein. Instead, the digestion of egg white and whey protein by trypsin was moderately enhanced in the presence of GSPE. However, under simulated human digestion condition, the grape pomace in the bread significantly reduced the digestibility of bread starch and protein.
基金The authors express their sincere gratitude to Prof.Dr.Praveenkumar Shetty,Director(R&D),Nitte(DU)and Prof.Dr.Anirban Chakraborty,Director(NUCSER),Nitte(DU)for providing research facilities.The authors are grateful to Prof.Dr.Indrani Karunasagar,Director(DST-NUTEC),Nitte(DU)and Prof.Dr.Iddya Karunasagar,Advisor(Research and Patent),Nitte(DU)for their constant support and guidance.The authors also extend their gratitude to Prof.KK Bhat,Former HOD,Sensory Science Dept.,CFTRI,Mysore for his valuable suggestions.The authors acknowledge the Indian Council of Medical Research,New Delhi,India for funding this study.
文摘Lutein is a nutraceutical compound that promotes human eye health and prevents neurodegenerative diseases.The oral bioavailability of lutein is affected by both extrinsic and intrinsic factors in the host.Although hydrophobicity of the compound is further challenging,its lipophilicity can be utilized to micellize and thereby improve its oral bioavailability.Currently,available data on the effects of dietary fats on lutein micellization and permeation is limited and needs further exploration.In this study,the influence of 17 carrier type edible oils on lutein micellization and permeation,was investigated in a simulated digestion model.The overall effectiveness of these oils to permeate micellized lutein was attributed to its Fatty Acid(FA)profile.While 94%of the edible oils exhibited a positive influence on the permeation of micellized lutein,the micellization and permeation efficiency of these oils were significantly(p≤0.05)modulated by the saturation of FA in the order Saturated(SFA)>Mono-Unsaturated(MUFA)>Poly-Unsaturated(PUFA).The highest apparent permeability coefficient was exhibited by lutein micellized in ghee(3.01×10^(-6) cm/s)and butter(2.93×10^(-6) cm/s),which was 1.28 and 1.24 folds higher than lutein alone(2.35×10^(-6) cm/s)respectively.Exceptionally MUFA rich olive oil and PUFA rich flaxseed oil improved lutein permeation by 1.19(2.80×10^(-6) cm/s)and 1.14 folds(2.69×10^(-6) cm/s)respectively.This study is the first to report the influence of saturated fatty acids on micellization and permeation of lutein.Furthermore,the outcomes of this study offer the field of lutein delivery systems a fresh perspective.