When a direct-current (DC) machine runs at extremely low speed or standstill, the reduction in the armature resistance and the armature flux linkage due to the short circuited coils by the brushes on the commutator ...When a direct-current (DC) machine runs at extremely low speed or standstill, the reduction in the armature resistance and the armature flux linkage due to the short circuited coils by the brushes on the commutator should not be neglected. Taking this reduction effect into account, the average values of the reduction coefficients relate to the machine parameters in complicated forms. In this paper, an effective algorithm for the precise computation of the average values of these reduction coefficients is proposed. Furthermore, in the algorithm, the effect of the insulation thickness between the commutator segments and the multiplicity of the wave winding are considered for the first time. The proposed algorithm can also be accommodated into the computer-aided design (CAD) of a DC machine, which normally runs at extremely low speed or standstill.展开更多
文摘When a direct-current (DC) machine runs at extremely low speed or standstill, the reduction in the armature resistance and the armature flux linkage due to the short circuited coils by the brushes on the commutator should not be neglected. Taking this reduction effect into account, the average values of the reduction coefficients relate to the machine parameters in complicated forms. In this paper, an effective algorithm for the precise computation of the average values of these reduction coefficients is proposed. Furthermore, in the algorithm, the effect of the insulation thickness between the commutator segments and the multiplicity of the wave winding are considered for the first time. The proposed algorithm can also be accommodated into the computer-aided design (CAD) of a DC machine, which normally runs at extremely low speed or standstill.